Startseite The minimal arity of near unanimity polymorphisms
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The minimal arity of near unanimity polymorphisms

  • Libor Barto EMAIL logo und Ondřej Draganov
Veröffentlicht/Copyright: 19. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Dmitriy Zhuk has proved that there exist relational structures which admit near unanimity polymorphisms, but the minimum arity of such a polymorphism is large and almost matches the known upper bounds. We present a simplified and explicit construction of such structures and a detailed, self–contained proof.


This work was supported by the Czech Science Foundation Grant No. 13-01832S.


  1. (Communicated by Miroslav Ploščica)

References

[1] Barto, L.: Finitely related algebras in congruence distributive varieties have near unanimity terms, Canad. J. Math. 65(1) (2013), 3–21.10.4153/CJM-2011-087-3Suche in Google Scholar

[2] Barto, L.—Bulín, J.: Deciding absorption in relational structures, Algebra Universalis 78(1) (2017), 3–18.10.1007/s00012-017-0440-5Suche in Google Scholar

[3] Barto, L.—Kozik, M.: Absorbing subalgebras, cyclic terms, and the constraint satisfaction problem, Log. Methods Comput. Sci. 8(1) (2012).10.2168/LMCS-8(1:7)2012Suche in Google Scholar

[4] Barto, L.—Krokhin, A.—Willard, R.: Polymorphisms, and how to use them. In: The Constraint Satisfaction Problem: Complexity and Approximability (A. Krokhin, S. Zivny, eds.), Dagstuhl Follow-Ups 7, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017, pp. 1–44.Suche in Google Scholar

[5] Bergman, C.: Universal Algebra: Fundamentals and Selected Topics. Pure Appl. Math., Taylor and Francis, 2011.10.1201/9781439851302Suche in Google Scholar

[6] Bulín, J.: Decidability of absorption in relational structures of bounded width, Algebra Universalis 72(1) (2014), 15–28.10.1007/s00012-014-0283-2Suche in Google Scholar

[7] Burris, S. N.—Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Math. 78, Springer-Verlag, New York, 1981.10.1007/978-1-4613-8130-3Suche in Google Scholar

[8] Feder, T.—Vardi, M. Y.: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory, SIAM J. Comput. 28(1) (1998), 57–104.10.1137/S0097539794266766Suche in Google Scholar

[9] Larose, B.—Loten, B. C.—Zádori, L.: A polynomial-time algorithm for near-unanimity graphs, J. Algorithms 55 (2005), 177–191.10.1016/j.jalgor.2004.04.011Suche in Google Scholar

[10] Maróti, M.: The existence of a near-unanimity term in a finite algebra is decidable, J. Symbolic Logic 74(3) (2009), 1001–1014.10.2178/jsl/1245158096Suche in Google Scholar

[11] Maróti, M.—McKenzie, R.: Existence theorems for weakly symmetric operations, Algebra Universalis 59(3-4) (2008), 463–489.10.1007/s00012-008-2122-9Suche in Google Scholar

[12] Zhuk, D. N.: The existence of a near-unanimity function is decidable, Algebra Universalis 71(1) (2014), 31–54.10.1007/s00012-013-0259-7Suche in Google Scholar

Received: 2017-12-04
Accepted: 2018-06-26
Published Online: 2019-03-19
Published in Print: 2019-04-24

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0223/html
Button zum nach oben scrollen