Startseite Mathematik Example of C-rigid polytopes which are not B-rigid
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Example of C-rigid polytopes which are not B-rigid

  • Suyoung Choi EMAIL logo und Kyoungsuk Park
Veröffentlicht/Copyright: 19. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A simple polytope P is said to be B-rigid if its combinatorial structure is characterized by its Tor-algebra, and is said to be C-rigid if its combinatorial structure is characterized by the cohomology ring of a quasitoric manifold over P. It is known that a B-rigid simple polytope is C-rigid. In this paper, we show that the B-rigidity is not equivalent to the C-rigidity.

MSC 2010: 52B35; 14M25; 05E40; 55NXX

The first named author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1D1A1A09917654).


  1. (Communicated by David Buhagiar)

Acknowledgement

The authors thank the anonymous reviewer for his/her careful reading of our manuscript and pointing out some computation errors in the proof of the main theorem. They also appreciate the reviewer’s comments on the references and the definition of B-rigidity.

References

[1] Bosio, F.: Combinatorially rigid simple polytopes withd + 3 facets, arXiv:1511.09039 (2015).Suche in Google Scholar

[2] Buchstaber, V. M.: Lectures on toric topology. In: Proceedings of Toric Topology Workshop KAIST 2008, Vol. 10, Trends in Math. New Series, no. 1, Information Center for Mathematical Sciences, KAIST, 2008, pp. 1–64.Suche in Google Scholar

[3] Buchstaber, V. M.—Erokhovets, N. Y.: Fullerenes, polytopes and toric topology. In: Combinatorial and Toric Homotopy. Introducatory lectures, pp. 67–178, Vol. 35, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., World Sci. Publ., River Edge, NJ, 2017.10.1142/9789813226579_0002Suche in Google Scholar

[4] Buchstaber, V. M.—Erokhovets, N.—Masuda, M.—Panov, T. E.—Park, S.: Cohomological rigidity of manifolds defined by right-angled 3-dimensional polytopes, Uspekhi Mat. Nauk 72(2) (2017), 3–66 (in Russian); Russian Math. Surveys 72(2) (2017), 199–256 (English translation).Suche in Google Scholar

[5] Buchstaber, V. M.—Panov, T. E.: Toric Topology, Math. Surveys Monogr. 204, Amer. Math. Soc., Providence, RI, 2015.10.1090/surv/204Suche in Google Scholar

[6] Choi, S.: Different moment-angle manifolds arising from two polytopes having the same bigraded Betti numbers, Algebr. Geom. Topol. 13(6) (2013), 3639–3649.10.2140/agt.2013.13.3639Suche in Google Scholar

[7] Choi, S.—Kim, J. S.: Combinatorial rigidity of 3-dimensional simplicial polytopes, Int. Math. Res. Not. IMRN 8 (2011), 1935–1951.10.1093/imrn/rnq143Suche in Google Scholar

[8] Choi, S.—Panov, T. E.—Suh, D. Y.: Toric cohomological rigidity of simple convex polytopes, J. Lond. Math. Soc. 82(2) (2010), 343–360.10.1112/jlms/jdq022Suche in Google Scholar

[9] Davis, M. W.—Januszkiewicz, T.: Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62(2) (1991), 417–451.10.1215/S0012-7094-91-06217-4Suche in Google Scholar

[10] Erokhovets, N. Yu.: Moment-angle manifolds of simple n-dimensional polytopes withn + 3 facets, Uspekhi Mat. Nauk 66(5) (2011), 187–188 (in Russian); Russian Math. Surveys 66(5) (2011), 1006–1008 (English translation).10.1070/RM2011v066n05ABEH004767Suche in Google Scholar

[11] Erokhovets, N. Yu.: Buchstaber invariant theory of simplicial complexes and convex polytopes, Trudy MIAN 286(1) (2014), 144–206 (in Russian); Proc. Steklov Inst. Math. 286(1) (2014), 128–187 (English translation).10.1134/S008154381406008XSuche in Google Scholar

[12] Garrison, A.—Scott, R: Small covers of the dodecahedron and the 120-cell, Proc. Amer. Math. Soc. 131(3) (2003), 963–971.10.1090/S0002-9939-02-06577-2Suche in Google Scholar

[13] Gretenkort, J.—Kleinschmidt, P.—Sturmfels, B.: On the existence of certain smooth toric varieties, Discrete Comput. Geom. 5(3) (1990), 255–262.10.1007/BF02187789Suche in Google Scholar

[14] Grünbaum, B.: Convex Polytopes. Grad. Texts in Math. 221, Springer-Verlag, New York, 2003. Prepared and with a preface by Volker Kaibel, Victor Klee and Günter M. Ziegler.10.1007/978-1-4613-0019-9Suche in Google Scholar

[15] de Medrano, S. L.: Topology of the intersection of quadrics inRn. In: Algebraic topology (Arcata, CA, 1986), Lecture Notes in Math. 1370, Springer, Berlin, 1989, pp. 280–292.10.1007/BFb0085235Suche in Google Scholar

[16] Masuda, M.—Suh, D. Y.: Classification problems of toric manifolds via topology. Toric topology, Contemp. Math. 460, Amer. Math. Soc., Providence, RI, 2008, pp. 273–286.10.1090/conm/460/09024Suche in Google Scholar

[17] Park, K.: Combinatorics of coxeter groups with permutation tableaux and cohomological rigidity of simple polytopes, Ph.D. Thesis, Ajou university, 2015, pp. 1–110.Suche in Google Scholar

Received: 2017-07-02
Accepted: 2018-04-11
Published Online: 2019-03-19
Published in Print: 2019-04-24

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0236/html
Button zum nach oben scrollen