Startseite Gradient estimates for a nonlinear heat equation under the Finsler-Ricci flow
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Gradient estimates for a nonlinear heat equation under the Finsler-Ricci flow

  • Fanqi Zeng und Qun He EMAIL logo
Veröffentlicht/Copyright: 19. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper considers a compact Finsler manifold (Mn, F(t), m) evolving under the Finsler-Ricci flow and establishes global gradient estimates for positive solutions of the following nonlinear heat equation:

tu=Δmu,

where Δm is the Finsler-Laplacian. As applications, several Harnack inequalities are obtained.

  1. (Communicated by Július Korbaš)

Acknowledgment

The authors would like to express sincere thanks to the anonymous referee and editors for their valuable suggestions and comments which greatly improve the quality of the paper.

References

[1] Azami, S.—Razavi, A.: Existence and uniqueness for solutions of Ricci flow on Finsler manifolds, Int. J. Geom. Methods Mod. Phys. 10 (2013), 21 pp.10.1142/S0219887812500910Suche in Google Scholar

[2] Bidabad, B.—Yarahmadi, M.: On quasi-Einstein Finsler spaces, Bull. Iranian Math. Soc. 40 (2014), 921–930.Suche in Google Scholar

[3] Bao, D.—Chern, S. S.—Shen, Z. M.: An Introduction to Riemannian-Finsler Geometry. Grad. Texts in Math. 200, Springer-Verlag, 2000.10.1007/978-1-4612-1268-3Suche in Google Scholar

[4] Bao, D.—Robles, C.: Ricci and flag curvatures in Finsler geometry. A sampler of Riemann-Finsler geometry. Math. Sci. Res. Inst. Publ. 50, Cambridge Univ. Press, Cambridge, 2004.Suche in Google Scholar

[5] Bao, D.: On two curvature-driven problems in Riemann-Finsler geometry. In: Finsler Geometry in Memory of Makoto Matsumoto, Adv. Stud. Pure Math. 48, Math. Soc., Japan, Tokyo, 2007, pp. 19–71.Suche in Google Scholar

[6] Bailesteanu, M.—Cao, X. D.—Pulemotov, A.: Gradient estimates for the heat equation under the Ricci flow, J. Funct. Anal. 258 (2010), 3517–3542.10.1016/j.jfa.2009.12.003Suche in Google Scholar

[7] Guenther, C. M.: The fundamental solution on manifolds with time-dependent metrics, J. Geom. Anal. 12 (2002), 425–436.10.1007/BF02922048Suche in Google Scholar

[8] Hamilton, R.: A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), 113–125.10.4310/CAG.1993.v1.n1.a6Suche in Google Scholar

[9] Li, P.—Yau, S. T.: On the parabolic kernel of the Schröinger operator, Acta Math. 156 (1986), 153–201.10.1007/BF02399203Suche in Google Scholar

[10] Li, J. Y.: Gradient estimate for the heat kernel of a complete Riemannian manifold and its applications, J. Funct. Anal. 97 (1991), 293–310.10.1016/0022-1236(91)90003-NSuche in Google Scholar

[11] Liu, S. P.: Gradient estimates for solutions of the heat equation under Ricci flow, Pacific J. Math. 243 (2009), 165–180.10.2140/pjm.2009.243.165Suche in Google Scholar

[12] Li, J. F.—Xu, X. J.: Differential Harnack inequalities on Riemannian manifolds I: linear heat equation, Adv. Math. 226 (2011), 4456–4491.10.1016/j.aim.2010.12.009Suche in Google Scholar

[13] Lakzian, S.: Differential Harnack estimates for positive solutions to heat equation under Finsler-Ricci flow, Pacific J. Math. 278 (2015), 447–462.10.2140/pjm.2015.278.447Suche in Google Scholar

[14] Ma, L.: Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal. 241 (2006), 374–382.10.1016/j.jfa.2006.06.006Suche in Google Scholar

[15] Ohta, S.—Sturm, K. T.: Heat flow on Finsler manifolds, Comm. Pure Appl. Math. 62 (2009), 1386–1433.10.1002/cpa.20273Suche in Google Scholar

[16] Ohta, S.—Sturm, K. T.: Bochner-Weitzenbock formula and Li-Yau estimates on Finsler manifolds, Adv. Math. 252 (2014), 429–448.10.1016/j.aim.2013.10.018Suche in Google Scholar

[17] Ohta, S.: Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), 211–249.10.1007/s00526-009-0227-4Suche in Google Scholar

[18] Ohta, S.: Vanishing s-curvature of randers spaces, Differential Geom. Appl. 29 (2011), 174–178.10.1016/j.difgeo.2010.12.007Suche in Google Scholar

[19] Sun, J.: Gradient estimates for positive solutions of the heat equation under geometric flow, Pacific J. Math. 253 (2011), 489–510.10.2140/pjm.2011.253.489Suche in Google Scholar

[20] Yang, Y. Y.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds, Proc. Amer. Math. Soc. 136 (2008), 4095–4102.10.1090/S0002-9939-08-09398-2Suche in Google Scholar

[21] Zeng, F. Q.—He, Q.: Gradient estimates and Harnack inequalities of a nonlinear heat equation for the Finsler-Laplacian on Finsler manifolds, preprint.Suche in Google Scholar

Received: 2017-09-30
Accepted: 2018-03-29
Published Online: 2019-03-19
Published in Print: 2019-04-24

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0233/html
Button zum nach oben scrollen