Startseite Mathematik Integrals of logarithmic functions and alternating multiple zeta values
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Integrals of logarithmic functions and alternating multiple zeta values

  • Ce Xu EMAIL logo
Veröffentlicht/Copyright: 18. März 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

By using the method of iterated integral representations of series, we establish some explicit relationships between multiple zeta values and integrals of logarithmic functions. As applications of these relations, we show that multiple zeta values of the form

ζ(1¯,1m1,1¯,1k1),(k,mN)

for m = 1 or k = 1, and

ζ(1¯,1m1,p,1k1),(k,mN)

for p = 1 and 2, satisfy certain recurrence relations which allow us to write them in terms of zeta values, polylogarithms and ln 2. Furthermore, we also obtain reductions for certain multiple polylogarithmic values at 12.

  1. (Communicated by Filippo Nuccio)

Acknowledgement

The author would like to thank the anonymous referee for his/her helpful comments, which improve the presentation of the paper.

References

[1] Alzer, H.—Karayannakis, D.—Srivastava, H. M.: Series representations for some mathematical constants, J. Math. Anal. Appl. 320 (2006), 145–162.10.1016/j.jmaa.2005.06.059Suche in Google Scholar

[2] Andrews, G. E.—Askey, R.—Roy, R.: Special Functions, Cambridge University Press, 2000, 481–532.10.1017/CBO9781107325937Suche in Google Scholar

[3] Bailey, D. H.—Borwein, J. M.—Girgensohn, R.: Experimental evaluation of Euler sums, Exp. Math. 3 (1994), 17–30.10.1080/10586458.1994.10504573Suche in Google Scholar

[4] Bailey, D. H.—Borwein, J. M.—Crandall, R. E.: Computation and theory of extended Mordell-Tornheim-Witten sums, Math. Comp. 83 (2014), 1795–1821.10.1090/S0025-5718-2014-02768-3Suche in Google Scholar

[5] Berndt, B. C.: Ramanujan’s Notebooks, Part I, Springer-Verlag, New York, 1985.10.1007/978-1-4612-1088-7Suche in Google Scholar

[6] Berndt, B. C.: Ramanujan’s Notebooks, Part II, Springer-Verlag, New York, 1989.10.1007/978-1-4612-4530-8Suche in Google Scholar

[7] Blumlein, J.—Kurth, S.: Harmonic sums and Mellin transforms up to two loop order, Phys. Rev. D. 60 (1999), 14–18.10.1103/PhysRevD.60.014018Suche in Google Scholar

[8] Borwein, D.—Borwein, J. M.—Girgensohn, R.: Explicit evaluation of Euler sums, Proc. Edinburgh Math. 38 (1995), 277–294.10.1017/S0013091500019088Suche in Google Scholar

[9] Borwein, J.—Borwein, P.—Girgensohn, R.—Parnes, S.: Making sense of experimental mathematics, Math. Intell. 18 (1996), 12–18.10.1007/BF03027288Suche in Google Scholar

[10] Borwein, J. M.—Bradley, D. M.—Broadhurst, D. J.: Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, Electron. J. Combin. 4 (1997), 1–21.10.37236/1320Suche in Google Scholar

[11] Borwein, J. M.— Bradley, D. M.—Broadhurst, D. J.—Lisoněk, P.: Special values of multiple polylogarithms, Trans. Amer. Math. Soc. 353 (2001), 907–941.10.1090/S0002-9947-00-02616-7Suche in Google Scholar

[12] Borwein, J. M.—Zucker, I. J.—Boersma, J.: The evaluation of character Euler double sums, Ramanujan J. 15 (2008), 377–405.10.1007/s11139-007-9083-zSuche in Google Scholar

[13] Borwein, J. M.—Girgensohn, R.: Evaluation of triple Euler sums, Electron. J. Combin. (1996), 2–7.10.37236/1247Suche in Google Scholar

[14] Coffey, M. W.: On some log-cosine integrals related to ζ(3), ζ(4), and ζ(6), J. Comput. Appl. Math. 159 (2003), 205–215.10.1016/S0377-0427(03)00438-2Suche in Google Scholar

[15] Coffey, M. W.: On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams, J. Comput. Appl. Math. 183 (2005), 84–100.10.1016/j.cam.2005.01.003Suche in Google Scholar

[16] Coffey, M. W.: On a three-dimensional symmetric Ising tetrahedron and contributions to the theory of the dilogarithm and Clausen functions, J. Math. Phys. 49 (2008), 542–555.10.1063/1.2902996Suche in Google Scholar

[17] Coffey, M. W.—Lubbers, N.: On generalized harmonic number sums, Appl. Math. Comput. 217 (2010), 689–698.10.1016/j.amc.2010.06.006Suche in Google Scholar

[18] Comtet, L.: Advanced Combinatorics, Boston D Reidel Publishing Company, 1974.10.1007/978-94-010-2196-8Suche in Google Scholar

[19] Dil, A.—Boyadzhiev, K. N.: Euler sums of hyperharmonic numbers, J. Number Theory 147 (2015), 490–498.10.1016/j.jnt.2014.07.018Suche in Google Scholar

[20] Flajolet, P.—Salvy, B.: Euler sums and contour integral representations, Exp. Math. 7 (1998), 15–35.10.1080/10586458.1998.10504356Suche in Google Scholar

[21] Freitas, P.: Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums, Math. Comput. 74 (2005), 1425–1440.10.1090/S0025-5718-05-01747-3Suche in Google Scholar

[22] Hessami Pilehrood, Kh.—Hessami Pilehrood, T.—Tauraso, R.: New properties of multiple harmonic sums modulo p and p-analogues of Leshchiner’s series, Trans. Amer. Math. Soc. 366 (2013), 3131–3159.10.1090/S0002-9947-2013-05980-6Suche in Google Scholar

[23] Hoffman, M. E.: Multiple harmonic series, Pacific J. Math. 152 (1992), 275–290.10.2140/pjm.1992.152.275Suche in Google Scholar

[24] Li, Z.: Another proof of Zagier’s evaluation formula of the multiple zeta values ζ(2, …, 2, 3, 2, …, 2), Math. Res. Lett. 20 (2012).10.4310/MRL.2013.v20.n5.a10Suche in Google Scholar

[25] Li, Z.: On functional relations for the alternating analogues of Tornheim’s double zeta function, Chinese Ann. Math. 36 (2015), 907–918.10.1007/s11401-015-0933-5Suche in Google Scholar

[26] Markett, C.: Triple sums and the Riemann zeta function, J. Number Theory 48 (1994), 113–132.10.1006/jnth.1994.1058Suche in Google Scholar

[27] Machide, T.: Extended double shuffle relations and the generating function of triple zeta values of any fixed weight, Kyushu J. Math. 67 (2013), 281–307.10.2206/kyushujm.67.281Suche in Google Scholar

[28] Mezö, I.—Dil, A.: Hyperharmonic series involving Hurwitz zeta function, J. Number Theory 130 (2010), 360–369.10.1016/j.jnt.2009.08.005Suche in Google Scholar

[29] Mezö, I.: Nonlinear Euler sums, Pacific J. Math. 272 (2014), 201–226.10.2140/pjm.2014.272.201Suche in Google Scholar

[30] Petojevic, A.—Srivastava, H. M.: Computation of the Mordell-Tornheim zeta values, Proc. Amer. Math. Soc. 136 (2008), 2719–2728.10.1090/S0002-9939-08-09350-7Suche in Google Scholar

[31] Rassias, T. M.—Srivastava, H. M.: Some classes of infinite series associated with the Riemann zeta function and polygamma functions and generalized harmonic numbers, Appl. Math. Comput. 131 (2002), 593–605.10.1016/S0096-3003(01)00172-2Suche in Google Scholar

[32] Sofo, A.: Integral forms of sums associated with harmonic numbers, Appl. Math. Comput. 207 (2009), 365–372.10.1016/j.amc.2008.10.044Suche in Google Scholar

[33] Sofo, A.: Harmonic sums and integral representations, J. Appl. Anal. 16 (2010), 265–277.10.1515/jaa.2010.018Suche in Google Scholar

[34] Sofo, A.: Quadratic alternating harmonic number sums, J. Number Theory 154 (2015), 144–159.10.1016/j.jnt.2015.02.013Suche in Google Scholar

[35] Sofo, A.—Srivastava, H. M.: Identities for the harmonic numbers and binomial coefficients, Ramanujan J. 25 (2011), 93–113.10.1007/s11139-010-9228-3Suche in Google Scholar

[36] Xu, C.: Multiple zeta values and Euler sums, J. Number Theory 177 (2017), 443–478.10.1016/j.jnt.2017.01.018Suche in Google Scholar

[37] Xu, C.: Identities for the multiple zeta (star) values. Results Math. 73 (2018), 1–22.10.1007/s00025-018-0761-5Suche in Google Scholar

[38] Xu, C.—Cheng, J.: Some results on Euler sums, Funct. et Approx. 54 (2016), 25–37.10.7169/facm/2016.54.1.3Suche in Google Scholar

[39] Xu, C.—Yan, Y.—Shi, Z.: Euler sums and integrals of polylogarithm functions, J. Number Theory 165 (2016), 84–108.10.1016/j.jnt.2016.01.025Suche in Google Scholar

[40] Zagier, D.: Values of zeta functions and their applications, First European Congress of Mathematics, Volume II, Birkhauser, Boston, 120 (1994), 497–512.10.1007/978-3-0348-9112-7_23Suche in Google Scholar

[41] Zagier, D.: Evaluation of the multiple zeta values ζ(2, …, 2, 3, 2, …, 2), Ann. Math. 2 (2012), 977–1000.10.4007/annals.2012.175.2.11Suche in Google Scholar

[42] Zhao, J.: On a conjecture of Borwein, Bradley and Broadhurst, J. Reine Angew. Math. 639 (2010), 223–233.10.1515/crelle.2010.016Suche in Google Scholar

Received: 2017-12-06
Accepted: 2018-04-23
Published Online: 2019-03-18
Published in Print: 2019-04-24

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0227/pdf
Button zum nach oben scrollen