Startseite Mathematik A generalized class of restricted Stirling and Lah numbers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A generalized class of restricted Stirling and Lah numbers

  • Toufik Mansour und Mark Shattuck EMAIL logo
Veröffentlicht/Copyright: 6. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we consider a polynomial generalization, denoted by uma,b (n, k), of the restricted Stirling numbers of the first and second kind, which reduces to these numbers when a = 1 and b = 0 or when a = 0 and b = 1, respectively. If a = b = 1, then uma,b (n, k) gives the cardinality of the set of Lah distributions on n distinct objects in which no block has cardinality exceeding m with k blocks altogether. We derive several combinatorial properties satisfied by uma,b (n, k) and some additional properties in the case when a = b = 1. Our results not only generalize previous formulas found for the restricted Stirling numbers of both kinds but also yield apparently new formulas for these numbers in several cases. Finally, an exponential generating function formula is derived for uma,b (n, k) as well as for the associated Cauchy numbers.

  1. Communicated by Anatolij Dvurečenskij

References

[1] Choi, J. Y.: Multi-restrained Stirling numbers, Ars Combin. 120 (2015), 113–127.Suche in Google Scholar

[2] Choi, J. Y.—Long, L.—Ng, S.—H.—Smith, J.: Reciprocity for multirestricted numbers, J. Combin. Theory Ser. A 113 (2006), 1050–1060.10.1016/j.jcta.2005.10.001Suche in Google Scholar

[3] Graham, R. L.—Knuth, D. E.—Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, second edition, Addison-Wesley, Boston, 1994.Suche in Google Scholar

[4] Komatsu, T.: Incomplete poly-Cauchy numbers, Monatsh. Math. 180 (2016), 271–288.10.1007/s00605-015-0810-zSuche in Google Scholar

[5] Komatsu, T.—Liptai, K.—Mezo, I.: Incomplete poly-Bernoulli numbers associated with incomplete Stirling numbers, (2015). arXiv:1510.05799v2.Suche in Google Scholar

[6] Komatsu, T.—Mező, I.—Szalay, L.: Incomplete Cauchy numbers, Acta Math. Hungar. 149 (2016), 306–323.10.1007/s10474-016-0616-zSuche in Google Scholar

[7] Lah, I.: Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik, Mitteil.-Bl. Math. Statistik 7 (1955), 203–212.Suche in Google Scholar

[8] Mansour, T.—Schork, M.—Shattuck, M.: On a new family of generalized Stirling and Bell numbers, Electron. J. Combin. 18 (2011), #P77.10.37236/564Suche in Google Scholar

[9] Mező, I.: Periodicity of the last digits of some combinatorial sequences, J. Integer Seq. 17 (2014), Art. 14.1.1.Suche in Google Scholar

[10] Sloane, N. J.: The On-Line Encyclopedia of Integer Sequences, 2010. http://oeis.org.Suche in Google Scholar

Received: 2016-09-04
Accepted: 2017-04-11
Published Online: 2018-08-06
Published in Print: 2018-08-28

© 2018 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0140/pdf
Button zum nach oben scrollen