Startseite On generalized 4-th root metrics of isotropic scalar curvature
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On generalized 4-th root metrics of isotropic scalar curvature

  • Akbar Tayebi EMAIL logo
Veröffentlicht/Copyright: 6. August 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

By an interesting physical perspective and a suitable contraction of the Riemannian curvature tensor in Finsler geometry, Akbar-Zadeh introduced the notion of scalar curvature for the Finsler metrics. A Finsler metric is called of isotropic scalar curvature if the scalar curvature depends on the position only. In this paper, we study the class of generalized 4-th root metrics. These metrics generalize 4-th root metrics which are used in Biology as ecological metrics. We find the necessary and sufficient condition under which a generalized 4-th root metric is of isotropic scalar curvature. Then, we find the necessary and sufficient condition under which the conformal change of a generalized 4-th root metric is of isotropic scalar curvature. Finally, we characterize the Bryant metrics of isotropic scalar curvature.

  1. Communicated by Július Korbaš

Acknowledgement

The author would like to thank Professors Hassan Akbar-Zadeh, Vladimir Balan and Robert Bryant for their valuable comments. Also, we would like to thank the referees for their careful reading of the manuscript and helpful suggestions.

References

[1] Akbar-Zadeh, H.: Sur les espaces de Finsler á courbures sectionnelles constantes, Bull. Acad. Roy. Belg. Cl. Sci. 74(5) (1988), 271–322.10.3406/barb.1988.57782Suche in Google Scholar

[2] Akbar-Zadeh, H.: Generalized Einstein manifolds, J. Geom. Phys. 17 (1995), 342–380.10.1016/0393-0440(94)00052-2Suche in Google Scholar

[3] Antonelli, P. L.—Ingarden, R.—Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ., Netherlands, 1993.10.1007/978-94-015-8194-3Suche in Google Scholar

[4] Bácsó, S.—Cheng, X.: Finsler conformal transformations and the curvature invariant, Publ. Math. Debrecen 70(1-2) (2007), 221–231.10.5486/PMD.2007.3606Suche in Google Scholar

[5] Balan, V.—Brinzei, N.: Einstein equations for (h, v)-Berwald-Moór relativistic models, Balkan. J. Geom. Appl. 11(2) (2006), 20–26.Suche in Google Scholar

[6] Bryant, R.: Finsler structures on the 2-sphere satisfyingK = 1, Contemp. Math. 196 (1996), 27–42.10.1090/conm/196/02427Suche in Google Scholar

[7] Bryant, R.: Projectively flat Finsler 2-spheres of constant curvature, Selecta Math. (N.S.) 3 (1997), 161–204.10.1007/s000290050009Suche in Google Scholar

[8] Cheng, X.—Yuan, M.: On Randers metrics of isotropic scalar curvature, Publ. Math. Debrecen 84 (2014), 63–74.10.5486/PMD.2014.5833Suche in Google Scholar

[9] Hashiguchi, H.—Ichijyo, Y.: Randers spaces with rectilinear geodetics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chem) 13 (1980), 33–40.Suche in Google Scholar

[10] A. Heydari, H.—Peyghan, E.—Tayebi, A.: Generalized P-reducible Finsler metrics, Acta Math. Hungar. 149(2) (2016), 286–296.10.1007/s10474-016-0615-0Suche in Google Scholar

[11] Li, B.—Shen, Z.: Ricci curvature tensor and non-Riemannian quantities, Canad. Math. Bull. 58 (2015), 530–537.10.4153/CMB-2014-063-4Suche in Google Scholar

[12] Li, B.—Shen, Z.: On projectively flat fourth root metrics, Canad. Math. Bull. 55 (2012), 138–145.10.4153/CMB-2011-056-5Suche in Google Scholar

[13] Shen, Z.: Projectively flat Finsler metrics of constant flag curvature, Trans. Amer. Math. Soc. 355(4) (2003), 1713–1728.10.1090/S0002-9947-02-03216-6Suche in Google Scholar

[14] Shibata, C.: On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto Univ. 24 (1984), 163–188.10.1215/kjm/1250521391Suche in Google Scholar

[15] Shimada, H.: On Finsler spaces with metricL = L=ai1i2imyi1yi2yimm, Tensor (N.S.) 33 (1979), 365–372.Suche in Google Scholar

[16] Shimada, H.: On the Ricci tensors of particular Finsler spaces, J. Korean Math. Soc. 14 (1977), 41–63.Suche in Google Scholar

[17] Tayebi, A.: On the class of generalized Landsbeg manifolds, Period. Math. Hungar. 72 (2016), 29–36.10.1007/s10998-015-0108-xSuche in Google Scholar

[18] Tayebi, A.—Alipour, A.: On distance functions induces by Finsler metrics, Publ. Math. Debrecen 90 (2017), 333–357.10.5486/PMD.2017.7505Suche in Google Scholar

[19] Tayebi, A.—Barzegari, B.: Generalized Berwald spaces with (α, β)-metrics, Indag. Math. 27 (2016), 670–683.10.1016/j.indag.2016.01.002Suche in Google Scholar

[20] Tayebi, A.—Najafi, B.: On m-th root Finsler metrics, J. Geom. Phys. 61 (2011), 1479–1484.10.1016/j.geomphys.2011.03.012Suche in Google Scholar

[21] Tayebi, A.—Najafi, B.: On m-th root metrics with special curvature properties, C. R. Math. Acad. Sci. Paris Ser. I. 349 (2011), 691–693.10.1016/j.crma.2011.06.004Suche in Google Scholar

[22] Tayebi, A.—Nankali, A.: On generalized Einstein Randers metrics, Int. J. Geom. Methods Mod. Phys. 12(9) (2015), 1550105, 14 pages.10.1142/S0219887815501054Suche in Google Scholar

[23] Tayebi, A.—Nankali, A.—Peyghan, E.: Some curvature properties of Cartan spaces with mth root metrics, Lith. Math. J. 54(1) (2014), 106–114.10.1007/s10986-014-9230-3Suche in Google Scholar

[24] Tayebi, A.—Nankali, A.—Peyghan, E.: Some properties of m-th root Finsler metrics, J. Contemp. Math. Anal. 49(4) (2014), 157–166.10.3103/S1068362314040049Suche in Google Scholar

[25] Tayebi, A.—Peyghan, E.: On Ricci tensors of Randers metrics, J. Geom. Phys. 60 (2010), 1665–1670.10.1016/j.geomphys.2010.05.016Suche in Google Scholar

[26] Tayebi, A.—Peyghan, E.—Shahbazi Nia, M.: On generalized m-th root Finsler metrics, Linear Algebra Appl. 437 (2012), 675–683.10.1016/j.laa.2012.02.025Suche in Google Scholar

[27] Tayebi, A.—Peyghan, E.—Shahbazi Nia, M.: On Randers change of m-th root Finsler metrics, Int. Electron. J. Geom. 8(1) (2015), 14–20.10.36890/iejg.592790Suche in Google Scholar

[28] Tayebi, A.—Sadeghi, H.: On Cartan torsion of Finsler metrics, Publ. Math. Debrecen 82(2) (2013), 461–471.10.5486/PMD.2013.5379Suche in Google Scholar

[29] Tayebi, A.—Sadeghi, H.—Peyghan, E.: On generalized Douglas-Weyl spaces, Bull. Malays. Math. Sci. Soc. (2) 36(3) (2013), 587–594.Suche in Google Scholar

[30] Tayebi, A.—Shahbazi Nia, M.: A new class of projectively flat Finsler metrics with constant flag curvatureK = 1, Differ. Geom. Appl. 41 (2015), 123–133.10.1016/j.difgeo.2015.05.003Suche in Google Scholar

[31] Tayebi, A.—Tabatabaeifar, T.—Peyghan, E.: On Kropina-change of m-th root Finsler metrics, Ukrainian J. Math. 66(1) (2014), 140–144.10.1007/s11253-014-0919-6Suche in Google Scholar

[32] Xu, B.—Li, B.: On a class of projectively flat Finsler metrics with flag curvatureK = 1, Differ. Geom. Appl. 31 (2013), 524–532.10.1016/j.difgeo.2013.05.001Suche in Google Scholar

[33] Yu, Y.—You, y.: On Einstein m-th root metrics, Differ. Geom. Appl. 28 (2010), 290–294.10.1016/j.difgeo.2009.10.011Suche in Google Scholar

Received: 2017-04-09
Accepted: 2017-05-13
Published Online: 2018-08-06
Published in Print: 2018-08-28

© 2018 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0154/html
Button zum nach oben scrollen