Startseite Finiteness of the discrete spectrum in a three-body system with point interaction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Finiteness of the discrete spectrum in a three-body system with point interaction

  • Kazushi Yoshitomi EMAIL logo
Veröffentlicht/Copyright: 14. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we are concerned with a three-body system with point interaction, which is called the Ter-Martirosian–Skornyakov extension. We locate the bottom of the essential spectrum of that system and establish the finiteness of the discrete spectrum below the bottom. Our work here refines the result of [MINLOS, R. A.: On point-like interaction between n fermions and another particle, Mosc. Math. J. 11 (2011), 113–127], where the semi-boundedness of the operator is obtained.


(Communicated by Gregor Dolinar)


Acknowledgement

Thanks to the anonymous referees for valuable suggestions and corrections.

References

[1] Albeverio, S.—Kurasov, P.: Singular Perturbation of Differential Operators: Solvable Schrödinger Type Operators, London Math. Soc. Lecture Note Ser. Vol. 271, Cambridge University Press, Cambridge, 2000.10.1017/CBO9780511758904Suche in Google Scholar

[2] Amrein, W. O.: Hilbert Space Methods in Quantum Mechanics, EPFL Press, Lausanne, 2009.Suche in Google Scholar

[3] Amrein, W. O.—Jauch, J. M.—Sinha, K. B.: Scattering Theory in Quantum Mechanics. Lecture notes and supplements in physics, No.16, W. A. Benjamin, Inc., Massachusetts, 1977.Suche in Google Scholar

[4] Blank, J.—Exner, P.—Havliček, M.: Hilbert Space Operators in Quantum Physics, Second edition, Springer, New York, 2008.Suche in Google Scholar

[5] Correggi, M.—Dell’antonio, G. F.—Finco, D.—Michelangeli, A. —Teta, A.: Stability fora system of N fermions plus a different particle with zero-range interactions, Rev. Math. Phys. 24 (2012), 1250017, 32 pp.10.1142/S0129055X12500171Suche in Google Scholar

[6] Dell’antonio, G. F.—Figari, R.—Teta, A.: Hamiltonians for systems of N particles interacting through point interaction, Ann. Inst. Henri Poincaré Phys. Théor. 60 (1994), 253–290.Suche in Google Scholar

[7] Finco, D.—Teta, A.: Quadratic forms for the fermionic unitary gas model, Rep. Math. Phys. 69 (2012), 131–159.10.1016/S0034-4877(12)60022-6Suche in Google Scholar

[8] Minlos, R.: On point-like interaction between n fermions and another particle, Mosc. Math. J. 11 (2011), 113–127.10.17323/1609-4514-2011-11-1-113-127Suche in Google Scholar

[9] Minlos, R.: A system of three pointwise interacting quantum particles, Russian Math. Surveys 69 (2014), 539–564.10.1070/RM2014v069n03ABEH004900Suche in Google Scholar

[10] Minlos, R.—Shermatov, M. K.: Point interaction of three particles, Moscow Univ. Math. Bull. 44(6) (1989), 7–15.10.1007/BFb0022944Suche in Google Scholar

[11] Mizohata, S.: The Theory of Partial Differential Equations, Cambridge Univ. Press, London, 1973.Suche in Google Scholar

[12] Schechter, M.: Operator Methods in Quantum Mechanics, Dover Publications, Inc., Mineola, New York, 2002.Suche in Google Scholar

Received: 2015-5-30
Accepted: 2016-3-30
Published Online: 2017-7-14
Published in Print: 2017-8-28

© 2017 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0030/html
Button zum nach oben scrollen