Home On certain generalized matrix methods of convergence in (ℓ)-groups
Article
Licensed
Unlicensed Requires Authentication

On certain generalized matrix methods of convergence in ()-groups

  • Pratulananda Das EMAIL logo and Ekrem Savas
Published/Copyright: July 14, 2017
Become an author with De Gruyter Brill

Abstract

We introduce a convergence of weight g: ℕ → [0, ∞) where g(n) → ∞ and n/g(n) ↛ 0 with respect to a summability matrix method A for sequences (which generalizes the notion of A-convergence of order α, 0 < α ≤ 1 [BOCCUTO, A.—DAS, P.: On matrix methods of convergence of order (α) in ()-groups, Filomat 29 (2015), 2069–2077] in a ()-group. We prove some basic results including a Cauchy-type criterion. Finally a closedness result for the space of such convergent sequences is proved.


(Communicated by Ľubica Holá)


Acknowledgement

The first author is thankful to TUBITAK for granting Visiting Scientist position for one month and to SERB, DST, New Delhi for granting a research project No. SR/S4/MS: 813/13 during the tenure of which this work was done.

References

[1] Albeyrak, H.—Pehlivan, S.: Statistical convergence and statistical continuity on locally solid Riesz spaces, Topology Appl. 159 (2012), 1887–1893.10.1016/j.topol.2011.04.026Search in Google Scholar

[2] Anastassiou, G. A.—Duman, O.: Towards Intelligent Modeling: Statistical Approximation Theory. Intelligent System Reference Library 14, Springer-Verlag, Berlin, Heidelberg, New York, 2011.10.1007/978-3-642-19826-7Search in Google Scholar

[3] Balcerzak, M.—Dems, K.—Komisarski, A.: Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), 715–729.10.1016/j.jmaa.2006.05.040Search in Google Scholar

[4] Balcerzak, M.—Das, P.—Filipczak, M.—Swaczyna, J.: Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147 (2015), 97–115.10.1007/s10474-015-0510-0Search in Google Scholar

[5] Bhunia, S.—Das, P.—Pal, S. K.: Restricting statistical convergence, Acta Math. Hungar. 134 (2012), 153–161.10.1007/s10474-011-0122-2Search in Google Scholar

[6] Boccuto, A.—Candeloro, D.: Sobczyk-Hammer decomposition and convergence theorems for measures with values in (ℓ)-groups, Real Anal. Exchange 33 (2007/2008), 91–106.10.14321/realanalexch.33.1.0091Search in Google Scholar

[7] Boccuto, A.—Riečan B.—Vrábelová, M.: Kurzweil-Henstock Integral in Riesz Spaces, Bentham Science Publ., Singapore, 2009.10.2174/97816080500311090101Search in Google Scholar

[8] Boccuto, A.—Das, P.: On matrix methods of convergence of order (α) in ()-groups, Filomat 29 (2015), 2069–2077.10.2298/FIL1509069BSearch in Google Scholar

[9] Caserta, A.—Di Maio G.—Kočinac, LJ. D. R.: Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.10.1155/2011/420419Search in Google Scholar

[10] Colak, R.: Statistical convergence of order α, Modern methods in Funct. Anal. Appl., New Delhi, India, Anamaya Pub., (2010), 121–129.Search in Google Scholar

[11] Das, P.—Ghosal, S. K.: Some further results on 𝓘-Cauchy sequences and condition (AP ), Comput. Math. Appl. 59 (2010), 2597–2600.10.1016/j.camwa.2010.01.027Search in Google Scholar

[12] Di Maio, G.—Kočinac, Lj. D. R.: Statistical convergence in topology, Topology Appl. 156 (2008), 28–45.10.1016/j.topol.2008.01.015Search in Google Scholar

[13] Farah, I.: Analytic quotients: Theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000).10.1090/memo/0702Search in Google Scholar

[14] Fast, H.: Sur la convergence statistique, Colloq. Math. 2 (1951), 41–44.10.4064/cm-2-3-4-241-244Search in Google Scholar

[15] Freedman, A. R.—Sember, J. J.: On summing sequences of 0’s and 1’s, Rocky Mountain J. Math. 11 (1981), 419–425.10.1216/RMJ-1981-11-3-419Search in Google Scholar

[16] Fridy, J. A.: On statistical convergence, Analysis 5 (1985), 301–313.10.1524/anly.1985.5.4.301Search in Google Scholar

[17] Katětov, M.: Product of filters, Comment. Math. Univ. Carol. 9 (1968), 173–189.Search in Google Scholar

[18] Kostyrko, P.—Šalát T.—Wilczyński, W.: 𝓘-convergence, Real Anal. Exchange 26 (2000/2001), 669–685.10.2307/44154069Search in Google Scholar

[19] Lorentz, G. G.: A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190.10.1007/BF02393648Search in Google Scholar

[20] Luxemburg, W. A. J.—Zaanen, A. C.: Riesz Spaces I, North-Holland Publishing Co., Amsterdam, 1971.Search in Google Scholar

[21] Šalát, T.: On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.Search in Google Scholar

[22] Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.10.4064/cm-2-2-98-108Search in Google Scholar

Received: 2015-6-26
Accepted: 2015-11-10
Published Online: 2017-7-14
Published in Print: 2017-8-28

© 2017 Mathematical Institute Slovak Academy of Sciences

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0021/html
Scroll to top button