Abstract
This paper provides the empirical basis to support predictions of the Human Factor Engineering (HFE) influences in Human Reliability Analysis (HRA). A few methods were analyzed to identify HFE concepts in approaches of Performance Shaping Factors (PSFs): Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR) and Cognitive Reliability and Error Analysis Method (CREAM), Success Likelihood Index Method (SLIM) Plant Analysis Risk – Human Reliability Analysis (SPAR-H), A Technique for Human Error Rate Prediction (ATHEANA) and Man-Machine-Organization System Analysis (MMOSA). Also, in order to identify other necessary PSFs in HFE, an additional investigation process of human performance (HPIP) in event occurrences was used. Thus, the human error probability could be reduced and its evaluating can give out the information for error detection and recovery. The HFE analysis model developed using BHEP values (maximum and pessimistic) is based on the simplifying assumption that all specific circumstances of HFE characteristics are equal in importance and have the same value of influence on human performance. This model is incorporated into the PSA through the HRA methodology. Finally, a clarification of the relationships between task analysis and the HFE is performed, ie between potential human errors and design requirements.
Abstract
Dieser Beitrag liefert eine empirische Grundlage zur Unterstützung von Vorhersagen über den Einfluss des Human Factor Engineerings (HFE) in der Human Reliability Analysis (HRA). Es warden dazu einige Methoden analysiert, um HFE-Konzepte mit Ansätzen von Performance Shaping Factors (PSFs) zu identifizieren: Technique for Human Error Rate Prediction (THERP), Human Cognitive Reliability (HCR) und Cognitive Reliability and Error Analysis Method (CREAM), Success Likelihood Index Method (SLIM) Plant Analysis Risk – Human Reliability Analysis (SPAR-H), A Technique for Human Error Rate Prediction (ATHEANA) und Man-Machine-Organization System Analysis (MMOSA). Um weitere notwendige PSFs in der HFE zu identifizieren, wurde ein zusätzlicher Untersuchungsprozess der Human Performance (HPIP) bei Ereignisereignissen eingesetzt. Auf diese Weise konnte die menschliche Fehlerwahrscheinlichkeit reduziert werden und ihre Auswertung kann Informationen zur Fehlererkennung und -beseitigung liefern. Das unter Verwendung von BHEP-Werten (maximal und pessimistisch) entwickelte HFE-Analysemodell basiert auf der vereinfachenden Annahme, dass alle spezifischen Umstände der HFE-Merkmale gleich wichtig sind und den gleichen Einfluss auf die menschliche Leistung haben. Dieses Modell wird durch die HRA-Methodik in die PSA einbezogen. Schließlich wird eine Klärung der Beziehungen zwischen der Aufgabenanalyse und dem HFE vorgenommen, d. h. zwischen potenziellen menschlichen Fehlern und den Konstruktionsanforderungen.
References
1 Swain, A. D.; Guttman, H. E.: Handbook of Human Reliability Analysis With Emphasis on Nuclear Power Plant Applications. NUREG/CR-1278,Washington DC: U.S. Nuclear Regulatory Commission (1983)10.2172/5752058Suche in Google Scholar
2 IAEA: Human Factors Engineering in the Design of Nuclear Power Plants. Vienna, IAEA Safety Standards No. SSG-51 (2019)Suche in Google Scholar
3 FAA: FAASystem Safety Handbook. Federal Aviation Administration (2000)Suche in Google Scholar
4 IAEA: Safety of Nuclear Power Plants: Design. Vienna, IAEA Safety Standards Series No. SSR –2/1 (2016)Suche in Google Scholar
5 Stefanescu, P.: The Organizational and Human Factor in Nuclear Safety. Note de curs, UPB, Facultatea de Energetica. 2000 (in Romanian)Suche in Google Scholar
6 de Vasconcelos, V.; Pereira da Silva, E. M.; Lopes da Costa, A. C.; Carneiro dos Reis, S.: Safety, Reliability, Risk Management and Human Factors: An integrated engineering approach applied to nuclear facilities. 2009 International Nuclear Atlantic Conference – INAC 2009 Rio de Janeiro, RJ, Brazil, September 27 to October 2, 2009, ISBN: 978–85–99141–03 –°Suche in Google Scholar
7 Feller, W.: An introduction to Probability Theory and its Application. New York, London Sydney, Jon Wiley & Sons. Inc, 196810.1063/1.3062516Suche in Google Scholar
8 Farcasiu, M.; Prisecaru, I.: MMOSA – a new approach of the human and organizational factor analysis in PSA. Reliability Engineering and System Safety 123 (2014) 91–98, , DOI:10.1016/j.ress.2013.10.00410.1016/j.ress.2013.10.004Suche in Google Scholar
9 Farcasiu, M.; Prisecaru, I.: The Evaluation of the Human Performance Analysis Methods in Nuclear Facility Operation. The 4th Annual International Conference on Sustainable Development through Nuclear Research and Education, Pitesti, Romania (2011)Suche in Google Scholar
10 NRC: Development of the NRC’s Human Performance Investigation Process (HPIP). NUREG-CR-5455, SI-92–101, Washington, DC (1993)Suche in Google Scholar
11 Farcasiu, M.; Nitoi, M.: The organizational factor in PSA framework. Nuclear Engineering and Design 293 (2015) 205–211, , DOI:10.1016/j.nucengdes.2015.06.02010.1016/j.nucengdes.2015.06.020Suche in Google Scholar
12 NRC: Human Factors Engineering Program Review Model. NUREG-0711, Rev. 3 (2012)Suche in Google Scholar
13 INR: Fault trees development and fault tree report elaboration. PL-01/07-EPSN-024 (1998) RENEL-GEN, EPSNSuche in Google Scholar
14 Vesely, W. E.; Goldberg, F.F.; Roberts, N. H.; Haasl, D. F.: Fault Tree Handbook. NUREG-0492, U.S Nuclear Regulatory Commission, Washington, D.C (1981)Suche in Google Scholar
15 Georgescu, G.; Turcu, I.: Soft for the Probabilistic Safety Analysis Level 1. Program TEMPUS SENECA, University Polithehnic Bucharest (1996) (in Romanian)Suche in Google Scholar
16 Jean, A. F.: Observed Component Reliability Data. Point Lepreau Generating Station, Canada, IR-01530–01 (1995)Suche in Google Scholar
17 IAEA: Component Reliability Data for use in PSA. IAEA-TECDOC-478, Vienna, Austria, (1988)Suche in Google Scholar
18 McColl, D.: Component Reliability Data for Candu Stations. AECL Canada, Report no. 86296 (1986)Suche in Google Scholar
19 IAEA: Application of Reliability Centred Maintenance to Optimize Operation and Maintenance in Nuclear Power Plants. IAEA-TECDOC-1590 (2007)Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany
Artikel in diesem Heft
- Frontmatter
- ANSYS-CFX simulation of the SRBTL test loop core with nanofluid coolant
- Evaluation of human factor engineering influence in nuclear safety using probabilistic safety assessment techniques
- Optimization of the TiO2 nanofluid as a coolant in the VVER-1000 nuclear reactor based on the thermal reactivity feedback coefficients via the genetic algorithm
- Application research on neutron-gamma discrimination based on BC501A liquid scintillator
- Severe accident simulation for VVER-1000 reactor using ASTEC-V2.1.1.3
- Study on specific heat capacity and thermal conductivity of uranium nitride
- Review and outlook of the integral test facility PKL III corresponding studies
- Effects of some level density models and γ-ray strength functions on production cross-section calculations of 16,18O and 24,26Mg radioisotopes
- An application research for near-surface repository of strontium-90 sorption kinetic model on mudrocks
- Calendar of events
Artikel in diesem Heft
- Frontmatter
- ANSYS-CFX simulation of the SRBTL test loop core with nanofluid coolant
- Evaluation of human factor engineering influence in nuclear safety using probabilistic safety assessment techniques
- Optimization of the TiO2 nanofluid as a coolant in the VVER-1000 nuclear reactor based on the thermal reactivity feedback coefficients via the genetic algorithm
- Application research on neutron-gamma discrimination based on BC501A liquid scintillator
- Severe accident simulation for VVER-1000 reactor using ASTEC-V2.1.1.3
- Study on specific heat capacity and thermal conductivity of uranium nitride
- Review and outlook of the integral test facility PKL III corresponding studies
- Effects of some level density models and γ-ray strength functions on production cross-section calculations of 16,18O and 24,26Mg radioisotopes
- An application research for near-surface repository of strontium-90 sorption kinetic model on mudrocks
- Calendar of events