Startseite Exergy-based efficient ecological-function optimization for endoreversible Carnot refrigerators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exergy-based efficient ecological-function optimization for endoreversible Carnot refrigerators

  • Yanju He , Yanlin Ge EMAIL logo , Lingen Chen EMAIL logo und Huijun Feng
Veröffentlicht/Copyright: 12. März 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Based on the definition of exergy-based efficient ecological-function (EEF) proposed in the existing literature, which is the product of energy conversion coefficient-of-performance (ɛ) and exergy-based ecological-function (E), this paper will introduce the exergy-based EEF into performance optimization for Carnot refrigerator cycle. Via endoreversible Carnot refrigerator model established in previous literature, expression of the exergy-based EEF of refrigerator is derived based on finite-time thermodynamic theory, relationships of dimensionless exergy-based EEF versus ɛ and cooling load (R) are studied, and performance differences of refrigerator cycles at the maximum exergy-based EEF, at the maximum E, and at the maximum efficient cooling-load conditions are compared. The results demonstrate that relationships of dimensionless exergy-based EEF versus R and ɛ are parabolic-like ones; in actual design, the refrigerator should be designed at the larger R and ɛ points. When exergy-based EEF is taken as optimization-objective, although R decreases slightly, ɛ is increased, and entropy-generation-rate (σ) is greatly decreased, so exergy-based EEF does not only reflect the compromise between the R and σ, but also reflect the compromise between the R and ɛ.


Corresponding authors: Yanlin Ge and Lingen Chen, Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Wuhan Institute of Technology, Wuhan 430205, P.R. China; Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, Wuhan Institute of Technology, Wuhan 430205, P.R. China; Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, P.R. China; and School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P.R. China, E-mail: (Y. Ge), (L. Chen)

Acknowledgments

The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This paper is supported by The Natural Science Foundation of China (Project Nos. 52171317 and 51779262).

  7. Data availability: Not applicable.

Nomenclature

A

exergy-output-rate [kW]

E

ecological-function [kW]

E ɛ

efficient ecological-function [kW]

F

heat-transfer area [m2]

f

heat-transfer area ratio

Q

heat-exchange rate [kW]

R

cooling-load [kW]

T

temperature [K]

x

working-fluid temperature-ratio

Greek symbols

α, β

heat-transfer coefficient

ɛ

coefficient-of-performance

σ

entropy-generation-rate [kW/K]

τ

cycle period

Ω

efficient R

Superscript

dimensionless

Subscripts

E ̄

point at maximum dimensionless E

E ɛ

point at maximum EEF

E ̄ ε

point at maximum dimensionless EEF

Ω ̄

point at maximum dimensionless Ω

H/L

high/low temperature heat-reservoir side

HC/LC

high/low temperature heat-reservoir side working-fluid

max

maximum

opt

optimal

0

ambient temperature

Abbreviations

ECR

endoreversible carnot refrigerator

EEF

efficient ecological-function

References

[1] F. L. Curzon and B. Ahlborn, “Efficiency of a Carnot engine at maximum power output,” Am. J. Phys., vol. 43, no. 1, pp. 22–24, 1975. https://doi.org/10.1119/1.10023.Suche in Google Scholar

[2] B. Andresen, Finite-Time Thermodynamics, Copenhagen, University of Copenhagen, 1983.Suche in Google Scholar

[3] L. G. Chen, C. Wu, and F. R. Sun, “Finite time thermodynamic optimization or entropy generation minimization of energy systems,” J. Non-Equilibrium Thermodyn., vol. 24, no. 4, pp. 327–359, 1999. https://doi.org/10.1515/jnetdy.1999.020.Suche in Google Scholar

[4] B. Andresen, “Current trends in finite-time thermodynamics,” Angew. Chem., Int. Ed., vol. 50, no. 12, pp. 2690–2704, 2011. https://doi.org/10.1002/anie.201001411.Suche in Google Scholar PubMed

[5] M. Feidt and M. Costea, “Variations on the models of Carnot irreversible thermomechanical engine,” J. Non-Equilibrium Thermodyn., vol. 48, no. 2, pp. 135–145, 2024. https://doi.org/10.1515/jnet-2023-0109.Suche in Google Scholar

[6] A. M. A. de Parga-Regalado and G. A. de Parga, “Thermoeconomic optimization with a dissipation cost,” J. Non-Equilibrium Thermodyn., vol. 49, no. 4, pp. 513–528, 2024. https://doi.org/10.1515/jnet-2023-0089.Suche in Google Scholar

[7] L. G. Chen, et al.., “Constructal thermodynamic optimization theory for energy utilization systems: its research progress and preliminary exploration for application in solar-driven polygeneration systems combined heating, power, cooling and hydrogen production,” J. Wuhan Inst. Technol., vol. 46, no. 5, pp. 543–563, 2024.Suche in Google Scholar

[8] L. G. Chen and S. J. Xia, “Minimum mass-entransy dissipation profile for one-way isothermal diffusive mass-transfer process with mass-resistance and mass-leakage,” Sci. China Technol. Sci., vol. 67, no. 8, pp. 2427–2435, 2024. https://doi.org/10.1007/s11431-023-2575-y.Suche in Google Scholar

[9] L. G. Chen and S. J. Xia, “Entropy-generation-minimization path for one-way isothermal and isobaric mass-transport-processes with mass-resistance and mass-leakage,” Int. J. Heat Mass Transfer, vol. 235, p. 126211, 2024, https://doi.org/10.1016/j.ijheatmasstransfer.2024.126211.Suche in Google Scholar

[10] L. G. Chen and S. J. Xia, “Maximum work configuration of finite potential source endoreversible non-isothermal chemical engines,” J. Non-Equilibrium Thermodyn., vol. 48, no. 1, pp. 41–53, 2023. https://doi.org/10.1515/jnet-2022-0045.Suche in Google Scholar

[11] L. G. Chen, S. S. Shi, H. J. Feng, and Y. L. Ge, “Maximum ecological function performance for a three-reservoir endoreversible chemical pump,” J. Non-Equilibrium Thermodyn., vol. 48, no. 2, pp. 179–194, 2023. https://doi.org/10.1515/jnet-2022-0062.Suche in Google Scholar

[12] L. G. Chen and S. J. Xia, “Power output and efficiency optimization of endoreversible non-isothermal chemical engine via Lewis analogy,” Sci. China Technol. Sci., vol. 66, no. 9, pp. 2651–2659, 2023. https://doi.org/10.1007/s11431-022-2281-8.Suche in Google Scholar

[13] S. S. Shi, L. G. Chen, Y. L. Ge, and H. J. Feng, “Performance optimization of non-isothermal endoreversible chemical pump via Lewis analogy,” Energy, vol. 300, p. 131582, 2024, https://doi.org/10.1016/j.energy.2024.131582.Suche in Google Scholar

[14] L. G. Chen and S. J. Xia, “Power maximization for multistage endoreversible non-isothermal-chemical-engine based on Lewis analogy,” Int. Commun. Heat Mass Tran., vol. 152, p. 107305, 2024, https://doi.org/10.1016/j.icheatmasstransfer.2024.107305.Suche in Google Scholar

[15] C. Z. Qi, L. G. Chen, Y. L. Ge, and H. J. Feng, “Heat transfer effect on the performance of three-heat-reservoir thermal Brownian refrigerator,” J. Non-Equilibrium Thermodyn., vol. 49, no. 1, pp. 11–25, 2024. https://doi.org/10.1515/jnet-2023-0050.Suche in Google Scholar

[16] L. G. Chen, C. Z. Qi, Y. L. Ge, and H. J. Feng, “Equivalent combined cycle modelling for three-heat-reservoir thermal Brownian heat pump with heat-transfer effect and its optimal performance,” Sci. China Technol. Sci., vol. 68, no. 2, p. 1220103, 2025. https://doi.org/10.1007/s11431-024-2751-1.Suche in Google Scholar

[17] W. H. Yang, H. J. Feng, L. G. Chen, and Y. L. Ge, “Power and efficiency optimizations of a simple irreversible supercritical organic Rankine cycle,” Energy, vol. 270, p. 126824, 2023.10.1016/j.energy.2023.127755Suche in Google Scholar

[18] D. Wu, Y. L. Ge, L. G. Chen, and L. Tian, “Effects of non-ideal gas working fluid on power and efficiency performances of an irreversible Otto cycle,” J. Non-Equilibrium Thermodyn., vol. 48, no. 4, pp. 477–492, 2023. https://doi.org/10.1515/jnet-2023-0036.Suche in Google Scholar

[19] L. G. Chen, F. L. Zhu, S. S. Shi, Y. L. Ge, and H. J. Feng, “Power and efficiency optimizations of Maisotsenko-Atkinson, Dual and Miller cycles and performance comparisons with corresponding traditional cycles,” Sci. China Technol. Sci., vol. 66, no. 12, pp. 3393–3411, 2023. https://doi.org/10.1007/s11431-023-2444-1.Suche in Google Scholar

[20] Z. Gong, Y. L. Ge, L. G. Chen, and H. J. Feng, “Multi-objective optimization of an endoreversible closed Atkinson cycle,” J. Non-Equilibrium Thermodyn., vol. 49, no. 1, pp. 73–88, 2024. https://doi.org/10.1515/jnet-2023-0051.Suche in Google Scholar

[21] K. Y. Xu, Y. L. Ge, L. G. Chen, and H. J. Feng, “A modified Diesel cycle via isothermal heat addition, its endoreversible modelling and multi-objective optimization,” Energy, vol. 291, p. 130289, 2024, https://doi.org/10.1016/j.energy.2024.130289.Suche in Google Scholar

[22] L. G. Chen and S. J. Xia, “Minimum power consumption of multistage irreversible Carnot heat pumps with heat transfer law of q∝ΔTm$q\propto {\left({\Delta }T\right)}^{m}$,” J. Non-Equilibrium Thermodyn., vol. 48, no. 1, pp. 107–118, 2023. https://doi.org/10.1515/jnet-2022-0068.Suche in Google Scholar

[23] J. Li and L. G. Chen, “Thermal and electrical properties of photovoltaic cell with linear phenomenological heat transfer law,” J. Non-Equilibrium Thermodyn., vol. 49, no. 3, pp. 275–288, 2024. https://doi.org/10.1515/jnet-2023-0056.Suche in Google Scholar

[24] H. S. Leff and W. D. Teeter, “EER, COP, and 2nd law efficiency for air-conditioners,” Am. J. Phys., vol. 46, no. 1, pp. 19–22, 1978.10.1119/1.11174Suche in Google Scholar

[25] L. I. Rozonoer and A. M. Tsirlin, “Optimal control of thermodynamic processes. I, II and III,” Avtom. Telemekhanika, no. 1, pp. 70–79, 1983, (2): 88-101; (3): 50-64.Suche in Google Scholar

[26] Z. J. Yan, “Relationship between optimal refrigeration coefficient and refrigeration rate of Carnot refrigerator,” Physics, vol. 13, no. 12, pp. 768–770, 1984, (in Chinese).Suche in Google Scholar

[27] Y. Goth and M. Feidt, “Optimum COP for endoreversible heat pump or refrigerating machine,” C. R. Acad. Sci., vol. 303, no. 1, pp. 19–24, 1986.Suche in Google Scholar

[28] W. Z. Chen, F. R. Sun, and L. G. Chen, “Finite time thermodynamic criteria for selecting parameters of refrigerating and heat pumping cycles between heat reservoirs,” Chin. Sci. Bull., vol. 35, no. 19, pp. 1670–1672, 1990.Suche in Google Scholar

[29] A. Bejan, “Theory of heat transfer-irreversible refrigeration plants,” Int. J. Heat Mass Tran., vol. 32, no. 9, pp. 1631–1639, 1989. https://doi.org/10.1016/0017-9310(89)90045-8.Suche in Google Scholar

[30] S. A. Klein, “Design considerations for refrigeration cycles,” Int. J. Refrig., vol. 15, no. 3, pp. 181–185, 1992. https://doi.org/10.1016/0140-7007(92)90009-j.Suche in Google Scholar

[31] G. Grazzini, “Irreversible refrigerators with isothermal heat exchangers,” Int. J. Refrig., vol. 16, no. 2, pp. 101–106, 1993. https://doi.org/10.1016/0140-7007(93)90066-h.Suche in Google Scholar

[32] L. G. Chen, F. R. Sun, and W. Z. Chen, “Optimization of the specific rate of refrigeration in combined refrigeration cycles,” Energy, vol. 20, no. 10, pp. 1049–1053, 1995. https://doi.org/10.1016/0360-5442(95)00051-h.Suche in Google Scholar

[33] M. H. Ahmadi, M. A. Ahmadi, A. H. Mohammadi, M. Feidt, and S. M. Pourkiaei, “Multi-objective optimization of an irreversible Stirling cryogenic refrigerator cycle,” Energy Convers. Manage., vol. 82, pp. 351–360, 2014, https://doi.org/10.1016/j.enconman.2014.03.033.Suche in Google Scholar

[34] C. Stanciu, M. Feidt, M. Costea, and D. Stanciu, “Optimization and entropy production: application to Carnot-like refrigeration machines,” Entropy, vol. 20, no. 12, p. 953, 2018, https://doi.org/10.3390/e20120953.Suche in Google Scholar PubMed PubMed Central

[35] M. Feidt and M. Costea, “Effect of machine entropy production on the optimal performance of a refrigerator,” Entropy, vol. 22, no. 9, p. 913, 2020. https://doi.org/10.3390/e22090913.Suche in Google Scholar PubMed PubMed Central

[36] L. G. Chen, Y. L. Ge, H. J. Feng, and T. T. Ren, “Energy and exergy analyses and optimizations for two-stage TEC driven by two-stage TEG with Thomson effect,” Sci. China Technol. Sci., vol. 67, no. 4, pp. 1077–1093, 2024. https://doi.org/10.1007/s11431-023-2498-9.Suche in Google Scholar

[37] E. Açıkkalpa, S. Y. Kandemir, and M. H. Ahmadi, “Solar driven Stirling engine-chemical heat pump-absorption refrigerator hybrid system as environmental friendly energy system,” J. Environ. Manage., vol. 232, pp. 455–461, 2019, https://doi.org/10.1016/j.jenvman.2018.11.055.Suche in Google Scholar PubMed

[38] E. Açıkkalp, S. Y. Kandemir, and M. H. Ahmadi, “Performance evaluation of the thermophotovoltaic-driven thermoionic refrigerator. Transactions of ASME,” J. Energy Resour. Technol., vol. 142, no. 3, p. 032001, 2020.10.1115/1.4044558Suche in Google Scholar

[39] Z. J. Yan, “η and P of Carnot heat engine when ηP is maximum,” J. Nat., vol. 4, no. 6, pp. 1–6, 1984, (in Chinese).Suche in Google Scholar

[40] T. Yilmaz, “A new performance criterion for heat engines: efficient power,” J. Energy Inst., vol. 79, no. 1, pp. 38–41, 2006. https://doi.org/10.1179/174602206x90931.Suche in Google Scholar

[41] Z. J. Yan, “ε and R of Carnot refrigerator when εR is maximum,” J. Nat., vol. 7, no. 1, pp. 73–74, 1984, (in Chinese).Suche in Google Scholar

[42] Z. J. Yan and J. C. Chen, “A class of irreversible Carnot refrigeration cycles with a general heat transfer law,” J. Phys. D: Appl. Phys., vol. 23, no. 2, pp. 136–161, 1990. https://doi.org/10.1088/0022-3727/23/2/002.Suche in Google Scholar

[43] J. Y. Chen, Y. L. Wang, J. C. Chen, and S. H. Su, “Optimal figure of merit of low-dissipation quantum refrigerators,” Phys. Rev. E, vol. 107, no. 4, p. 044118, 2023. https://doi.org/10.1103/physreve.107.044118.Suche in Google Scholar

[44] O. Contreras-Vergara, G. Valencia-Ortega, N. Sánchez-Salas, and J. I. Jiménez-Aquino, “Performance at maximum figure of merit for a Brownian Carnot refrigerator,” Phys. Rev. E, vol. 110, no. 2, p. 024123, 2024. https://doi.org/10.1103/physreve.110.024123.Suche in Google Scholar PubMed

[45] K. Kaur, S. Rebari, and V. Singh, “Performance analysis of quantum harmonic Otto engine and refrigerator under a trade-off figure of merit,” J. Non-Equilibrium Thermodyn., vol. 50, no. 1, pp. 1–19, 2025. https://doi.org/10.1515/jnet-2024-0034.Suche in Google Scholar

[46] E. Açıkkalp, “Exergetic sustainability evaluation of irreversible Carnot refrigerator,” Phys. A, vol. 436, pp. 311–320, 2015, https://doi.org/10.1016/j.physa.2015.04.036.Suche in Google Scholar

[47] F. Angulo-Brown, “An ecological optimization criterion for finite-time heat engines,” J. Appl. Phys., vol. 69, no. 11, pp. 7465–7469, 1991. https://doi.org/10.1063/1.347562.Suche in Google Scholar

[48] L. G. Chen, F. R. Sun, and W. Z. Chen, “Ecological optimization criteria of Carnot refrigerator,” J. Nat., vol. 15, no. 8, p. 633, 1992, (in Chinese).Suche in Google Scholar

[49] Z. J. Yan, “Comment on “ecological optimization criterion for finite-time heat engines”,” J. Appl. Phys., vol. 73, no. 7, p. 3583, 1993. https://doi.org/10.1063/1.354041.Suche in Google Scholar

[50] L. G. Chen, F. R. Sun, and W. Z. Chen, “Ecological quality factors of thermodynamic cycle,” J. Eng. Therm. Energy Power, vol. 9, no. 6, pp. 374–376, 1994, (in Chinese).Suche in Google Scholar

[51] L. G. Chen, J. P. Zhou, F. R. Sun, and C. Wu, “Ecological optimization for generalized irreversible Carnot engines,” Appl. Energy, vol. 77, no. 3, pp. 327–338, 2004. https://doi.org/10.1016/s0306-2619(03)00138-7.Suche in Google Scholar

[52] L. G. Chen, X. Q. Zhu, F. R. Sun, and C. Wu, “Exergy-based ecological optimization of linear phenomenological heat transfer law irreversible Carnot engines,” Appl. Energy, vol. 83, no. 6, pp. 573–582, 2006. https://doi.org/10.1016/j.apenergy.2005.05.004.Suche in Google Scholar

[53] L. G. Chen, X. Q. Zhu, F. R. Sun, and C. Wu, “Exergy-based ecological optimization for a generalized irreversible Carnot heat pump,” Appl. Energy, vol. 84, no. 1, pp. 78–88, 2007. https://doi.org/10.1016/j.apenergy.2006.04.003.Suche in Google Scholar

[54] L. G. Chen, X. Q. Zhu, F. R. Sun, and C. Wu, “Ecological optimization for generalized irreversible Carnot refrigerators,” J. Phys. D: Appl. Phys., vol. 38, no. 1, pp. 113–118, 2005. https://doi.org/10.1088/0022-3727/38/1/018.Suche in Google Scholar

[55] E. Açıkkalp and S. Y. Kandemir, “Performance assessment of the photon enhanced thermionic emitter and heat engine system,” J. Therm. Anal. Calorim., vol. 145, no. 3, pp. 649–657, 2021. https://doi.org/10.1007/s10973-020-10004-6.Suche in Google Scholar

[56] A. M. Ares de Parga-Regalado and M. A. Ramírez-Moreno, “On the analysis of an ecological regime for energy converters,” Phys. A, vol. 605, p. 128049, 2022.10.1016/j.physa.2022.128049Suche in Google Scholar

[57] W. F. Li, L. G. Chen, Y. L. Ge, H. J. Feng, and C. Z. Qi, “Ecological efficient power characteristics of a closed simple gas turbine cycle,” Therm. Turbine, vol. 53, no. 3, pp. 153–160, 2024, (in Chinese).Suche in Google Scholar

[58] Y. L. Wu, Y. L. Ge, P. Liu, L. G. Chen, C. Z. Qi, and X. Liu, “Ecological efficient power performance for an endoreversible closed Braysson cycle with constant-temperature heat reservoirs,” Power Syst. Eng., vol. 40, no. 3, pp. 15–18, 2024, (in Chinese).Suche in Google Scholar

[59] C. Hu, L. G. Chen, Y. L. Ge, H. J. Feng, and C. Z. Qi, “Maximum ecological efficient power performance of a closed endoreversible Atkinson cycle,” Energy Conserv., vol. 43, no. 8, pp. 59–62, 2024, (in Chinese).Suche in Google Scholar

[60] Y. H. Song, Y. L. Ge, L. G. Chen, S. Wei, and H. J. Feng, “Maximum ecological efficient power performance of an endoreversible Ericsson cycle,” Energy Conserv., vol. 43, no. 7, pp. 39–43, 2024, (in Chinese).Suche in Google Scholar

[61] Z. J. Xu, Y. L. Ge, L. G. Chen, and H. J. Feng, “Efficient ecological function analysis and multi-objective optimizations for an endoreversible simple air refrigerator cycle,” J. Non-Equilibrium Thermodyn., vol. 50, no. 1, pp. 107–125, 2025. https://doi.org/10.1515/jnet-2024-0045.Suche in Google Scholar

[62] Y. W. Su, L. G. Chen, Y. L. Ge, and H. J. Feng, “Efficient ecological function optimization for endoreversible Carnot heat pumps,” J. Non-Equilibrium Thermodyn., vol. 50, no. 2, 2025, https://doi.org/10.1515/jnet-2024-0061.Suche in Google Scholar

Received: 2024-10-24
Accepted: 2025-03-03
Published Online: 2025-03-12
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnet-2024-0099/html
Button zum nach oben scrollen