Home A general relativistic kinetic theory approach to linear transport in generic hydrodynamic frame
Article
Licensed
Unlicensed Requires Authentication

A general relativistic kinetic theory approach to linear transport in generic hydrodynamic frame

  • Long Cui , Xin Hao EMAIL logo and Liu Zhao
Published/Copyright: April 9, 2025

Abstract

In this study, we investigate the linear transport of neutral system within the framework of relativistic kinetic theory. Under the relaxation time approximation, we obtain an iterative solution to the relativistic Boltzmann equation in generic stationary spacetime. This solution provides a scheme to study non-equilibrium system order by order. Our calculations are performed in generic hydrodynamic frame, and the results can be reduced to a specific hydrodynamic frame by imposing constraints. As a specific example, we analytically calculated the covariant expressions of the particle flow and the energy momentum tensor up to the first order in relaxation time. Finally and most importantly, we present all 14 kinetic coefficients for a neutral system, which are verified to satisfy the Onsager reciprocal relation in a generic hydrodynamic frame and guarantee a non-negative entropy production in the frame where the first order conservation laws are restored.


Corresponding author: Xin Hao, School of Physics, Hebei Normal University, Shijiazhuang 050024, China, E-mail: 

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  4. Conflict of interest: The authors state no conflict of interest.

  5. Research funding: This work is supported by the National Natural Science Foundation of China under the grant No. 12275138 and by the Hebei NSF under the Grant No. A2021205037.

  6. Data availability: Not applicable.

Appendix A: Calculation of particle flow and energy momentum tensor

We work in orthonormal basis ( e a ̂ ) μ obeying η a ̂ b ̂ = g μ ν ( e a ̂ ) μ ( e b ̂ ) ν . Without loss of generality, we require that U μ = c ( e 0 ̂ ) μ , which implies that the induced metric can be expressed as Δ μ ν = δ i ̂ j ̂ ( e i ̂ ) μ ( e j ̂ ) ν .

For massive particles, the momentum p a ̂ = p μ ( e a ̂ ) μ can be parameterized by mass shell conditions

(65) p a ̂ = m c ( cosh ϑ , n i ̂ sinh ϑ ) ,

where n i ̂ S d 1 is a spacelike unit vector. Then the momentum space volume element be represented as

(66) ϖ = ( d p ) d | p 0 ̂ | = | p | d 1 d | p | d Ω d 1 p 0 ̂ = ( m c sinh ϑ ) d 1 d ϑ d Ω d 1 ,

where dΩ d−1 is the volume element of the (d − 1)-dimensional unit sphere S d−1. In this way, the integration in the momentum space can be decomposed into integration over ϑ ∈ (0, ∞) and integration over the unit sphere S d−1.

Here we list some useful integration formulae,

(67) d Ω d 1 = A d 1 ,

(68) n i ̂ n j ̂ d Ω d 1 = 1 d A d 1 δ i ̂ j ̂ ,

(69) n i ̂ n j ̂ n k ̂ n l ̂ d Ω d 1 = 3 ( d + 2 ) d A d 1 δ ( i ̂ j ̂ δ k ̂ l ̂ ) ,

(70) n i ̂ d Ω d 1 = n i ̂ n j ̂ n k ̂ d Ω d 1 = 0 .

Using eqs. (66)(71), we can further calculate

(71) ϖ p μ f ( 0 ) = g h d A d 1 ( m c ) d J d 1,1 1 c U μ ,

(72) ϖ p μ p ν f ( 0 ) = g h d A d 1 ( m c ) d + 1 J d 1,2 1 c 2 U μ U ν + 1 d J d + 1,0 Δ μ ν ,

(73) ϖ 1 p 0 ̂ p μ p ν f ( 0 ) = g h d A d 1 ( m c ) d J d 1,1 1 c 2 U μ U ν + 1 d J d + 1 , 1 Δ μ ν ,

(74) ϖ 1 p 0 ̂ p μ p ν p σ f ( 0 ) = g h d A d 1 ( m c ) d + 1 J d 1,2 1 c 3 U μ U ν U σ + 3 d J d + 1,0 1 c U ( μ Δ ν σ ) ,

(75) ϖ 1 p 0 ̂ p μ p ν p σ p ρ f ( 0 ) = g h d A d 1 ( m c ) d + 2 J d 1,3 1 c 4 U μ U ν U σ U ρ + 6 d J d + 1,1 1 c 2 U ( μ U ν Δ σ ρ ) + 3 ( d + 2 ) d J d + 3 , 1 Δ ( μ ν Δ σ ρ ) .

The following calculations are then straightforward,

(76) N ( 1 ) μ = c ϖ p μ f ( 1 ) = c 3 τ ϖ 1 ε p μ p ν p σ ν B σ + p ν ν α f ( 0 ) α = c 2 τ ν B σ α ϖ 1 p 0 ̂ p μ p ν p σ f ( 0 ) + ν α α ϖ 1 p 0 ̂ p μ p ν f ( 0 ) = c 2 τ g h d ( m c ) d A d 1 J d 1,1 α 1 c 2 U ν ν α m J d 1,2 α 1 c 2 U ν U σ ν B σ m 1 d J d + 1,0 α Δ ν σ ν B σ U μ + 1 d 2 m J d + 1,0 α U σ ( σ B ν ) + J d + 1 , 1 α ν α Δ μ ν = τ g h d ( m c ) d A d 1 J d 1,1 α U ν ν α + m c 2 J d 1,2 α U ν ν β m c 2 1 d J d + 1,0 α β ν U ν U μ + c 2 d J d + 1 , 1 α ν α + m c 2 J d + 1,0 α ν β 1 c 2 β U ρ ρ U ν Δ μ ν ,

(77) T ( 1 ) μ ν = c ϖ p μ p ν f ( 1 ) = c 3 τ ϖ 1 ε p μ p ν p ρ p σ ρ B σ + p σ σ α f ( 0 ) α = c 2 τ ρ B σ α ϖ 1 p 0 ̂ p μ p ν p ρ p σ f ( 0 ) + σ α α ϖ 1 p 0 ̂ p μ p ν p σ f ( 0 ) = c τ g h d A d 1 ( m c ) d + 1 1 c 2 m c 2 J d 1,3 α 1 c 2 U σ U ρ ρ B σ m c 2 1 d J d + 1,1 α ρ B σ Δ σ ρ + J d 1,2 α U σ σ α U μ U ν + 1 d 2 m c 2 J d + 1,1 α 1 c 2 U σ ( ρ B σ ) + J d + 1,0 α ρ α 2 U ( μ Δ ν ) ρ + 1 d m c 2 J d + 1,1 α 1 c 2 ρ B σ U σ U ρ m c 2 1 d J d + 3 , 1 α ρ B σ Δ σ ρ + J d + 1,0 α U σ σ α Δ μ ν m c 2 2 ( d + 2 ) d J d + 3 , 1 α ( ρ B σ ) Δ μ σ Δ ν ρ 1 d ρ B σ Δ σ ρ Δ μ ν = c τ g h d A d 1 ( m c ) d + 1 1 c 2 J d 1,2 α U σ σ α + m c 2 J d 1,3 α U σ σ β m c 2 1 d J d + 1,1 α β ρ U ρ U μ U ν + 1 d J d + 1,0 α ρ α + m c 2 J d + 1,1 α ρ β 1 c 2 β U σ σ U ρ ( Δ ρ ν U μ + Δ ρ μ U ν ) + 1 d J d + 1,0 α U ρ ρ α + m c 2 J d + 1,1 α U ρ ρ β m c 2 1 d J d + 3 , 1 α β ρ U ρ Δ μ ν m c 2 2 ( d + 2 ) d J d + 3 , 1 α β Δ ρ μ Δ σ ν ( ρ U σ ) 1 d ρ U ρ Δ μ ν .

References

[1] Z. Banach and S. Piekarski, “Perturbation theory based on the Einstein–Boltzmann system. I. Illustration of the theory for a Robertson–Walker geometry,” J. Math. Phys., vol. 35, no. 9, pp. 4809–4831, 1994. https://doi.org/10.1063/1.530879.Search in Google Scholar

[2] D. Fajman, J. Joudioux, and J. Smulevici, “The stability of the Minkowski space for the Einstein-Vlasov system,” Anal. Part. Differ. Equ., vol. 14, no. 2, pp. 425–531, 2021. https://doi.org/10.2140/apde.2021.14.425.Search in Google Scholar

[3] G. Rein, “Stability and instability results for equilibria of a (relativistic) self-gravitating collisionless gas – a review,” [arXiv:2305.02098].Search in Google Scholar

[4] P. Rioseco and O. Sarbach, “Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole,” Class. Quant. Grav., vol. 34, no. 9, p. 095007, 2017. https://doi.org/10.1088/1361-6382/aa65fa.Search in Google Scholar

[5] A. Cieślik, P. Mach, and A. Odrzywolek, “Accretion of the relativistic Vlasov gas in the equatorial plane of the Kerr black hole,” Phys. Rev. D, vol. 106, no. 10, p. 104056, 2022. https://doi.org/10.1103/physrevd.106.104056.Search in Google Scholar

[6] S. Weinberg, “Damping of tensor modes in cosmology,” Phys. Rev. D, vol. 69, no. 2, p. 023503, 2004. https://doi.org/10.1103/physrevd.69.023503.Search in Google Scholar

[7] C. A. Agon, J. F. Pedraza, and J. Ramos-Caro, “Kinetic theory of collisionless self-gravitating gases: post-Newtonian polytropes,” Phys. Rev. D, vol. 83, no. 12, p. 123007, 2011. https://doi.org/10.1103/physrevd.83.123007.Search in Google Scholar

[8] G. V. Vereshchagin and A. G. Aksenov, Relativistic Kinetic Theory: With Applications in Astrophysics and Cosmology, United Kingdom, Cambridge University Press, 2017.10.1017/9781107261365Search in Google Scholar

[9] U. W. Heinz, “Kinetic theory for nonabelian plasmas,” Phys. Rev. Lett., vol. 51, no. 5, pp. 351–354, 1983. https://doi.org/10.1103/physrevlett.51.351.Search in Google Scholar

[10] H. T. Elze and U. W. Heinz, “Quark – gluon transport theory,” Phys. Rep., vol. 183, no. 3, pp. 81–135, 1989. https://doi.org/10.1016/0370-1573(89)90059-8.Search in Google Scholar

[11] P. B. Arnold, “Quark-gluon plasmas and thermalization,” Int. J. Mod. Phys. E, vol. 16, no. 09, pp. 2555–2594, 2007. https://doi.org/10.1142/s021830130700832x.Search in Google Scholar

[12] F. Jüttner, “Das maxwellsche gesetz der geschwindigkeitsverteilung in der relativtheorie,” Ann. Phys., vol. 339, no. 5, pp. 856–882, 1911. https://doi.org/10.1002/andp.19113390503.Search in Google Scholar

[13] R. C. Tolman, “On the weight of heat and thermal equilibrium in general relativity,” Phys. Rev., vol. 35, no. 8, pp. 904–924, 1930. https://doi.org/10.1103/physrev.35.904.Search in Google Scholar

[14] R. Tolman and P. Ehrenfest, “Temperature equilibrium in a static gravitational field,” Phys. Rev., vol. 36, no. 12, pp. 1791–1798, 1930. https://doi.org/10.1103/physrev.36.1791.Search in Google Scholar

[15] G. E. Tauber and J. W. Weinberg, “Internal state of a gravitating gas,” Phys. Rev., vol. 122, no. 4, pp. 1342–1365, 1961. https://doi.org/10.1103/physrev.122.1342.Search in Google Scholar

[16] W. Israel, “Relativistic kinetic theory of a simple gas,” J. Math. Phys., vol. 4, no. 9, pp. 1163–1181, 1963. https://doi.org/10.1063/1.1704047.Search in Google Scholar

[17] R. W. Lindquist, “Relativistic transport theory,” Ann. Phys., vol. 37, no. 3, pp. 487–518, 1966. https://doi.org/10.1016/0003-4916(66)90207-7.Search in Google Scholar

[18] G. M. Kremer, “Relativistic gas in a Schwarzschild metric,” J. Stat. Mech., vol. 1304, no. 04, p. P04016, 2013. https://doi.org/10.1088/1742-5468/2013/04/p04016.Search in Google Scholar

[19] G. M. Kremer, “Diffusion of relativistic gas mixtures in gravitational fields,” Phys. A, vol. 393, pp. 76–85, 2014, https://doi.org/10.1016/j.physa.2013.09.019.Search in Google Scholar

[20] S. Liu, X. Hao, S.-F. Liu, and L. Zhao, “Covariant transport equation and gravito-conductivity in generic stationary spacetimes,” Eur. Phys. J. C, vol. 82, no. 12, p. 1100, 2022. https://doi.org/10.1140/epjc/s10052-022-11093-3.Search in Google Scholar

[21] X. Hao, S. Liu, and L. Zhao, “Gravito-thermal transports, Onsager reciprocal relation and gravitational Wiedemann-Franz law,” Nucl. Phys. B, vol. 1001, p. 116497, 2024, https://doi.org/10.1016/j.nuclphysb.2024.116497.Search in Google Scholar

[22] P. Kovtun, “First-order relativistic hydrodynamics is stable,” JHEP, vol. 10, p. 034, 2019, https://doi.org/10.1007/jhep10(2019)034.Search in Google Scholar

[23] O. Sarbach and T. Zannias, “Relativistic kinetic theory: an introduction,” AIP Conf. Proc., vol. 1548, no. 1, pp. 134–155, 2013. https://doi.org/10.1063/1.4817035.Search in Google Scholar

[24] O. Sarbach and T. Zannias, “The geometry of the tangent bundle and the relativistic kinetic theory of gases,” Class. Quant. Grav., vol. 31, 2014, no. 8, https://doi.org/10.1088/0264-9381/31/8/085013.Search in Google Scholar

[25] C. Cercignani and G. M. Kremer, The Relativistic Boltzmann Equation: Theory and Applications, Switzerland, Birkhäuser, 2002.10.1007/978-3-0348-8165-4Search in Google Scholar

[26] P. Kovtun, “Lectures on hydrodynamic fluctuations in relativistic theories,” J. Phys. A, vol. 45, p. 473001, 2012, https://doi.org/10.1088/1751-8113/45/47/473001.Search in Google Scholar

[27] J. L. Anderson and H. Witting, “A relativistic relaxation-time model for the Boltzmann equation,” Physica, vol. 74, no. 3, pp. 466–488, 1974. https://doi.org/10.1016/0031-8914(74)90355-3.Search in Google Scholar

[28] L. Onsager, “Reciprocal relations in irreversible processes. I,” Phys. Rev., vol. 37, no. 4, pp. 405–426, 1931. https://doi.org/10.1103/physrev.37.405.Search in Google Scholar

[29] L. Onsager, “Reciprocal relations in irreversible processes. II,” Phys. Rev., vol. 38, no. 12, pp. 2265–2279, 1931. https://doi.org/10.1103/physrev.38.2265.Search in Google Scholar

[30] G. S. Rocha, G. S. Denicol, and J. Noronha, “Novel relaxation time approximation to the relativistic Boltzmann equation,” Phys. Rev. Lett., vol. 127, p. 042301, 2021, https://doi.org/10.1103/physrevlett.127.042301.Search in Google Scholar PubMed

[31] G. S. Rocha, G. S. Denicol, and J. Noronha, “Perturbative approaches in relativistic kinetic theory and the emergence of first-order hydrodynamics,” Phys. Rev. D, vol. 106, no. 3, p. 036010, 2022. https://doi.org/10.1103/physrevd.106.036010.Search in Google Scholar

Received: 2024-04-10
Accepted: 2025-03-11
Published Online: 2025-04-09
Published in Print: 2025-07-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2024-0024/html
Scroll to top button