Startseite Mathematik Character degrees of 5-groups of maximal class
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Character degrees of 5-groups of maximal class

  • Lijuan He , Heng Lv EMAIL logo und Dongfang Yang
Veröffentlicht/Copyright: 6. MÀrz 2024

Abstract

Let đș be a 5-group of maximal class with major centralizer G 1 = C G ⁹ ( G 2 / G 4 ) . In this paper, we prove that the irreducible character degrees of a 5-group đș of maximal class are almost determined by the irreducible character degrees of the major centralizer G 1 and show that the set of irreducible character degrees of a 5-group of maximal class is either { 1 , 5 , 5 3 } or { 1 , 5 , 
 , 5 k } with k ≄ 1 .

Award Identifier / Grant number: 11971391

Award Identifier / Grant number: 12071376

Award Identifier / Grant number: 12301018

Award Identifier / Grant number: SWU-XDJH202305

Award Identifier / Grant number: 23KJB110002

Funding statement: This research is supported by the National Natural Science Foundation of China (Nos. 11971391, 12071376) and Fundamental Research Funds for the Central Universities (SWU-XDJH202305). The third author is supported by the NSF of China (No. 12301018) and the Natural Science Foundation for the Universities in Jiangsu Province (No. 23KJB110002).

Acknowledgements

The authors would like to thank the referee for her or his valuable suggestions and useful comments on this paper. They particularly thank the referee for the statement and proof of Lemma 3.10, which have greatly improved the quality of this paper.

  1. Communicated by: Hung Tong-Viet

References

[1] Y. Berkovich, Groups of Prime Power Order. Vol. 1, De Gruyter Exp. Math. 46, Walter de Gruyter, Berlin, 2008. 10.1515/9783110208221Suche in Google Scholar

[2] T. Bonner and L. Wilson, On the Taketa bound for normally monomial 𝑝-groups of maximal class II, J. Algebra Appl. 13 (2014), no. 5, Article ID 1350145. 10.1142/S0219498813501454Suche in Google Scholar

[3] W. Brisley and I. D. Macdonald, Two classes of metabelian 𝑝-groups, Math. Z. 112 (1969), 5–12. 10.1007/BF01277489Suche in Google Scholar

[4] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss. 134, Springer, Berlin, 1967. 10.1007/978-3-642-64981-3Suche in Google Scholar

[5] I. M. Isaacs, Character Theory of Finite Groups, Pure Appl. Math. 69, Academic Press, New York, 1976. Suche in Google Scholar

[6] T. M. Keller, D. Ragan and G. T. Tims, On the Taketa bound for normally monomial 𝑝-groups of maximal class, J. Algebra 277 (2004), no. 2, 657–688. 10.1016/j.jalgebra.2003.11.018Suche in Google Scholar

[7] L. G. Kovács and C. R. Leedham-Green, Some normally monomial 𝑝-groups of maximal class and large derived length, Quart. J. Math. Oxford Ser. (2) 37 (1986), no. 145, 49–54. 10.1093/qmath/37.1.49Suche in Google Scholar

[8] C. R. Leedham-Green and S. McKay, The Structure of Groups of Prime Power Order, London Math. Soc. Monogr. (N. S.) 27, Oxford University, Oxford, 2002. 10.1093/oso/9780198535485.001.0001Suche in Google Scholar

[9] A. Mann, Normally monomial 𝑝-groups, J. Algebra 300 (2006), no. 1, 2–9. 10.1016/j.jalgebra.2005.06.027Suche in Google Scholar

[10] A. Mann, Character degrees of some 𝑝-groups, preprint (2016), https://arxiv.org/abs/1602.04689. Suche in Google Scholar

[11] M. C. Slattery, Character degrees of normally monomial maximal class 5-groups, Character Theory of Finite Groups, Contemp. Math. 524, American Mathematical Society, Providence (2010), 153–159. 10.1090/conm/524/10354Suche in Google Scholar

[12] M. C. Slattery, Maximal class 𝑝-groups with large character degree gaps, Arch. Math. (Basel) 105 (2015), no. 6, 501–507. 10.1007/s00013-015-0836-4Suche in Google Scholar

[13] D. Yang and H. Lv, Character degrees of normally monomial 𝑝-groups of maximal class, J. Group Theory 26 (2023), no. 4, 817–826. 10.1515/jgth-2021-0212Suche in Google Scholar

Received: 2023-07-09
Revised: 2024-02-06
Published Online: 2024-03-06
Published in Print: 2024-09-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0103/html
Button zum nach oben scrollen