Startseite Mathematik Isomorphisms and commensurability of surface Houghton groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Isomorphisms and commensurability of surface Houghton groups

  • Javier Aramayona , George Domat ORCID logo EMAIL logo und Christopher J. Leininger
Veröffentlicht/Copyright: 21. März 2024

Abstract

We classify surface Houghton groups, as well as their pure subgroups, up to isomorphism, commensurability, and quasi-isometry.

Award Identifier / Grant number: PID2021-126254NB-I00

Award Identifier / Grant number: CEX2019-000904-S

Award Identifier / Grant number: DMS-2303262

Award Identifier / Grant number: DMS-2305286

Funding statement: J. Aramayona was supported by grant PID2021-126254NB-I00 and by the Severo Ochoa award CEX2019-000904-S, funded by MCIN/AEI/10.13039/501100011033. G. Domat was supported by NSF DMS-2303262. C. J. Leininger was supported by NSF DMS-2305286.

Acknowledgements

J. Aramayona is grateful to Rice University, and particularly to C. J. Leininger, for their hospitality. The authors are grateful to Anthony Genevois for pointing out Corollary 1.3.

  1. Communicated by: Rachel Skipper

References

[1] J. M. Alonso, Finiteness conditions on groups and quasi-isometries, J. Pure Appl. Algebra 95 (1994), no. 2, 121–129. 10.1016/0022-4049(94)90069-8Suche in Google Scholar

[2] J. Aramayona, K.-U. Bux, J. Flechsig, N. Petrosyan and X. Wu, Asymptotic mapping class groups of Cantor manifolds and their finiteness properties, preprint (2021), https://arxiv.org/abs/2110.05318. Suche in Google Scholar

[3] J. Aramayona, K.-U. Bux, H. Kim and C. J. Leininger, Surface Houghton groups, Math. Ann. (2023), 10.1007/s00208-023-02751-2. 10.1007/s00208-023-02751-2Suche in Google Scholar

[4] J. Aramayona, P. Patel and N. G. Vlamis, The first integral cohomology of pure mapping class groups, Int. Math. Res. Not. IMRN 2020 (2020), no. 22, 8973–8996. 10.1093/imrn/rnaa229Suche in Google Scholar

[5] J. Bavard, S. Dowdall and K. Rafi, Isomorphisms between big mapping class groups, Int. Math. Res. Not. IMRN 2020 (2020), no. 10, 3084–3099. 10.1093/imrn/rny093Suche in Google Scholar

[6] K. S. Brown, Finiteness properties of groups, J. Pure. Appl. Algebra 44 (1987), no. 1–3, 45–75. 10.1016/0022-4049(87)90015-6Suche in Google Scholar

[7] J. Cantwell, L. Conlon and S. R. Fenley, Endperiodic automorphisms of surfaces and foliations, Ergodic Theory Dynam. Systems 41 (2021), no. 1, 66–212. 10.1017/etds.2019.56Suche in Google Scholar

[8] S. R. Fenley, Asymptotic properties of depth one foliations in hyperbolic 3-manifolds, J. Differential Geom. 36 (1992), no. 2, 269–313. 10.4310/jdg/1214448743Suche in Google Scholar

[9] E. Field, A. Kent, C. Leininger and M. Loving, A lower bound on volumes of end-periodic mapping tori, preprint (2023), https://arxiv.org/abs/2306.03279. Suche in Google Scholar

[10] E. Field, H. Kim, C. Leininger and M. Loving, End-periodic homeomorphisms and volumes of mapping tori, J. Topol. 16 (2023), no. 1, 57–105. 10.1112/topo.12277Suche in Google Scholar

[11] L. Funar, Braided Houghton groups as mapping class groups, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N. S.) 53 (2007), no. 2, 229–240. Suche in Google Scholar

[12] L. Funar, C. Kapoudjian and V. Sergiescu, Asymptotically rigid mapping class groups and Thompson’s groups, Handbook of Teichmüller Theory. Volume III, IRMA Lect. Math. Theor. Phys. 17, European Mathematical Society, Zürich (2012), 595–664. 10.4171/103-1/11Suche in Google Scholar

[13] A. Genevois, A. Lonjou and C. Urech, Asymptotically rigid mapping class groups, I: Finiteness properties of braided Thompson’s and Houghton’s groups, Geom. Topol. 26 (2022), no. 3, 1385–1434. 10.2140/gt.2022.26.1385Suche in Google Scholar

[14] C. H. Houghton, The first cohomology of a group with permutation module coefficients, Arch. Math. (Basel) 31 (1978/79), no. 3, 254–258. 10.1007/BF01226445Suche in Google Scholar

[15] M. P. Landry, Y. N. Minsky and S. J. Taylor, Endperiodic maps via pseudo-Anosov flows, preprint (2023), https://arxiv.org/abs/2304.10620. Suche in Google Scholar

[16] E. Pardo, The isomorphism problem for Higman–Thompson groups, J. Algebra 344 (2011), 172–183. 10.1016/j.jalgebra.2011.07.026Suche in Google Scholar

Received: 2023-12-30
Revised: 2024-02-13
Published Online: 2024-03-21
Published in Print: 2024-09-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0297/html
Button zum nach oben scrollen