Abstract
We investigate the Reidemeister spectrum of direct products of nilpotent groups. More specifically, we prove that the Reidemeister spectra of the individual factors yield complete information for the Reidemeister spectrum of the direct product if all groups are finitely generated torsion-free nilpotent and have a directly indecomposable rational Malcev completion. We show this by determining the complete automorphism group of the direct product.
Funding source: Fonds Wetenschappelijk Onderzoek
Award Identifier / Grant number: 1112522N
Funding statement: The author is funded by an FWO-fellowship fundamental research (file number 1112522N).
Acknowledgements
The author thanks Karel Dekimpe and the anonymous referee for their useful remarks and suggestions, and Thomas Witdouck and Maarten Lathouwers for the helpful discussions.
-
Communicated by: Rachel Skipper
References
[1] G. Baumslag, Lecture Notes on Nilpotent Groups, CBMS Reg. Conf. Ser. Math. 2, American Mathematical Society, Providence, 1971. Suche in Google Scholar
[2] G. Baumslag, Direct decompositions of finitely generated torsion-free nilpotent groups, Math. Z. 145 (1975), no. 1, 1–10. 10.1007/BF01214492Suche in Google Scholar
[3] G. Baumslag, C. F. Miller, III and G. Ostheimer, Decomposability of finitely generated torsion-free nilpotent groups, Internat. J. Algebra Comput. 26 (2016), no. 8, 1529–1546. 10.1142/S0218196716500673Suche in Google Scholar
[4] J. N. S. Bidwell, Automorphisms of direct products of finite groups. II, Arch. Math. (Basel) 91 (2008), no. 2, 111–121. 10.1007/s00013-008-2653-5Suche in Google Scholar
[5] J. N. S. Bidwell, M. J. Curran and D. J. McCaughan, Automorphisms of direct products of finite groups, Arch. Math. (Basel) 86 (2006), no. 6, 481–489. 10.1007/s00013-005-1547-zSuche in Google Scholar
[6] L. J. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie groups and Their Applications. Part I, Cambridge Stud. Adv. Math. 18, Cambridge University, Cambridge, 1990. Suche in Google Scholar
[7] K. Dekimpe and M. Lathouwers, The Reidemeister spectrum of 2-step nilpotent groups determined by graphs, Comm. Algebra 51 (2023), no. 6, 2384–2407. 10.1080/00927872.2022.2160455Suche in Google Scholar
[8]
K. Dekimpe, D. Lima Gonçalves and O. Ocampo,
The
[9] A. Gennadievich Kurosh, Theory of Groups. Vol. 2, American Mathematical Society, Providence, 1960. Suche in Google Scholar
[10] D. Gonçalves and P. Wong, Twisted conjugacy classes in nilpotent groups, J. Reine Angew. Math. 633 (2009), 11–27. 10.1515/CRELLE.2009.058Suche in Google Scholar
[11] P. R. Heath and E. Keppelmann, Fibre techniques in Nielsen periodic point theory on nil and solvmanifolds. I, Topology Appl. 76 (1997), no. 3, 217–247. 10.1016/S0166-8641(96)00100-9Suche in Google Scholar
[12] B. J. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, American Mathematical Society, Providence, 1983. 10.1090/conm/014Suche in Google Scholar
[13] F. E. A. Johnson, Automorphisms of direct products of groups and their geometric realisations, Math. Ann. 263 (1983), no. 3, 343–364. 10.1007/BF01457136Suche in Google Scholar
[14] V. Roman’kov, Twisted conjugacy classes in nilpotent groups, J. Pure Appl. Algebra 215 (2011), no. 4, 664–671. 10.1016/j.jpaa.2010.06.015Suche in Google Scholar
[15] W. R. Scott, Group Theory, Dover, New York, 1987. Suche in Google Scholar
[16] D. Segal, Polycyclic Groups, Cambridge Tracts in Math. 82, Cambridge University, Cambridge, 1983. Suche in Google Scholar
[17] P. Senden, Twisted conjugacy in direct products of groups, Comm. Algebra 49 (2021), no. 12, 5402–5422. 10.1080/00927872.2021.1945615Suche in Google Scholar
[18] S. Tertooy, Reidemeister spectra for almost-crystallographic groups, PhD thesis, KU Leuven, 2019. 10.1080/10586458.2019.1636426Suche in Google Scholar
[19] F. Wecken, Fixpunktklassen. I, Math. Ann. 117 (1941), 659–671. 10.1007/BF01450034Suche in Google Scholar
[20] F. Wecken, Fixpunktklassen. II, Math. Ann. 118 (1941), 216–234. 10.1007/BF01487362Suche in Google Scholar
[21] F. Wecken, Fixpunktklassen. III, Math. Ann. 118 (1941), 544–577. 10.1007/BF01487386Suche in Google Scholar
[22] B. A. F. Wehrfritz, Endomorphisms of polycyclic-by-finite groups, Math. Z. 264 (2010), no. 3, 629–632. 10.1007/s00209-009-0482-2Suche in Google Scholar
[23] E. Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math. 177 (1937), 152–160. 10.1515/crll.1937.177.152Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Virtual planar braid groups and permutations
- Orders on free metabelian groups
- The Reidemeister spectrum of direct products of nilpotent groups
- Structure of the Macdonald groups in one parameter
- Finite groups with modular 𝜎-subnormal subgroups
- Invariance of the Schur multiplier, the Bogomolov multiplier and the minimal number of generators under a variant of isoclinism
- An exact sequence for the graded Picent
Artikel in diesem Heft
- Frontmatter
- Virtual planar braid groups and permutations
- Orders on free metabelian groups
- The Reidemeister spectrum of direct products of nilpotent groups
- Structure of the Macdonald groups in one parameter
- Finite groups with modular 𝜎-subnormal subgroups
- Invariance of the Schur multiplier, the Bogomolov multiplier and the minimal number of generators under a variant of isoclinism
- An exact sequence for the graded Picent