Abstract
Let π be a partition of the set of prime numbers. In this paper, we describe the finite groups for which every π-subnormal subgroup is modular.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 12171126
Award Identifier / Grant number: 12101165
Award Identifier / Grant number: 12101166
Funding source: Ministry of Education of the Republic of Belarus
Award Identifier / Grant number: 20211328
Award Identifier / Grant number: 20211778
Funding statement: Research was supported by the National Natural Science Foundation of China (No. 12171126, 12101165, and 12101166). Research of the third and the fourth authors were supported by Ministry of Education of the Republic of Belarus (No. 20211328 and 20211778).
Acknowledgements
The authors are deeply grateful for the useful comments and suggestions of the reviewers.
-
Communicated by: Andrea Lucchini
References
[1] A. Ballester-Bolinches, R. Esteban-Romero and M. Asaad, Products of Finite Groups, De Gruyter Exp. Math. 53, Walter de Gruyter, Berlin, 2010. 10.1515/9783110220612Search in Google Scholar
[2] A. Ballester-Bolinches and L.βM. Ezquerro, Classes of Finite Groups, Math. Appl. (Springer) 584, Springer, Dordrecht, 2006. Search in Google Scholar
[3] A. Ballester-Bolinches, M.βC. Pedraza-Aguilera and V. PΓ©rez-Calabuig, On two classes of generalised finite T-groups, Rev. R. Acad. Cienc. Exactas FΓs. Nat. Ser. A Mat. RACSAM 117 (2023), no. 3, Paper No. 105. 10.1007/s13398-023-01443-5Search in Google Scholar
[4] K. Doerk and T. Hawkes, Finite Soluble Groups, De Gruyter Exp. Math. 4, Walter de Gruyter, Berlin, 1992. 10.1515/9783110870138Search in Google Scholar
[5]
W. Guo, Z. Chi and A.βN. Skiba,
On π-supersoluble groups and one generalization of
[6]
B. Hu, J. Huang and A.βN. Skiba,
A generalisation of finite
[7] B. Hu, J. Huang and A.βN. Skiba, On π-quasinormal subgroups of finite groups, Bull. Aust. Math. Soc. 99 (2019), no. 3, 413β420. 10.1017/S0004972718001132Search in Google Scholar
[8] B. Hu, J. Huang and A.βN. Skiba, On two open problems of the theory of permutable subgroups of finite groups, Publ. Math. Debrecen 94 (2019), no. 3β4, 477β491. 10.5486/PMD.2019.8473Search in Google Scholar
[9] B. Huppert, Endliche Gruppen. I, Grundlehren Math. Wiss. 134, Springer, Berlin, 1967. 10.1007/978-3-642-64981-3Search in Google Scholar
[10] B. Huppert and N. Blackburn, Finite Groups. III, Grundlehren Math. Wiss. 243, Springer, Berlin, 1982. 10.1007/978-3-642-67997-1Search in Google Scholar
[11] N. ItΓ΄ and J. SzΓ©p, Γber die Quasinormalteiler von endlichen Gruppen, Acta Sci. Math. (Szeged) 23 (1962), 168β170. Search in Google Scholar
[12] R. Maier and P. Schmid, The embedding of quasinormal subgroups in finite groups, Math. Z. 131 (1973), 269β272. 10.1007/BF01187244Search in Google Scholar
[13] O. Ore, Contributions to the theory of groups of finite order, Duke Math. J. 5 (1939), no. 2, 431β460. 10.1215/S0012-7094-39-00537-5Search in Google Scholar
[14] D.βJ.βS. Robinson, The structure of finite groups in which permutability is a transitive relation, J. Aust. Math. Soc. 70 (2001), no. 2, 143β159. 10.1017/S1446788700002573Search in Google Scholar
[15]
I.βN. Safonova and A.βN. Skiba,
One application of the theory π-soluble
[16] R. Schmidt, Subgroup Lattices of Groups, De Gruyter Exp. Math. 14, Walter de Gruyter, Berlin, 1994. 10.1515/9783110868647Search in Google Scholar
[17] A.βN. Skiba, On π-subnormal and π-permutable subgroups of finite groups, J. Algebra 436 (2015), 1β16. 10.1016/j.jalgebra.2015.04.010Search in Google Scholar
[18] A.βN. Skiba, On some results in the theory of finite partially soluble groups, Commun. Math. Stat. 4 (2016), no. 3, 281β309. 10.1007/s40304-016-0088-zSearch in Google Scholar
[19]
A.βN. Skiba,
A Robinson characterization of finite
[20]
A.βN. Skiba,
Some characterizations of finite π-soluble
[21] J.βG. Thompson, An example of core-free quasinormal subgroups of π-groups, Math. Z. 96 (1967), 226β227. 10.1007/BF01124081Search in Google Scholar
[22] G. Zacher, I gruppi risolubili finiti in cui i sottogruppi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 37 (1964), 150β154. Search in Google Scholar
Β© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Virtual planar braid groups and permutations
- Orders on free metabelian groups
- The Reidemeister spectrum of direct products of nilpotent groups
- Structure of the Macdonald groups in one parameter
- Finite groups with modular π-subnormal subgroups
- Invariance of the Schur multiplier, the Bogomolov multiplier and the minimal number of generators under a variant of isoclinism
- An exact sequence for the graded Picent
Articles in the same Issue
- Frontmatter
- Virtual planar braid groups and permutations
- Orders on free metabelian groups
- The Reidemeister spectrum of direct products of nilpotent groups
- Structure of the Macdonald groups in one parameter
- Finite groups with modular π-subnormal subgroups
- Invariance of the Schur multiplier, the Bogomolov multiplier and the minimal number of generators under a variant of isoclinism
- An exact sequence for the graded Picent