Abstract
For a locally compact group 𝐺, we write
where
Acknowledgements
We would like to thank Professor Karl Heinrich Hofmann for sending us a copy of the article [18] he coauthored with Professor George Willis. We also want to thank the anonymous referee for the careful reading of the paper and for his/her valuable comments.
-
Communicated by: George Willis
References
[1] R. W. Bagley, T. S. Wu and J. S. Yang, Pro-Lie groups, Trans. Amer. Math. Soc. 287 (1985), no. 2, 829–838. 10.1090/S0002-9947-1985-0768744-6Suche in Google Scholar
[2] N. Bourbaki, Éléments de mathématique. intégration, chapitres 7-8, Springer, Berlin, 2007. Suche in Google Scholar
[3] P.-E. Caprace and A. Le Boudec, Bounding the covolume of lattices in products, Compos. Math. 155 (2019), no. 12, 2296–2333. 10.1112/S0010437X19007644Suche in Google Scholar
[4] P.-E. Caprace, C. Reid and P. Wesolek, Approximating simple locally compact groups by their dense locally compact subgroups, Int. Math. Res. Not. IMRN 2021 (2021), no. 7, 5037–5110. 10.1093/imrn/rny298Suche in Google Scholar
[5] V. S. Čarin, On groups of finite rank, Ukrain. Mat. Ž. 16 (1964), 212–219. Suche in Google Scholar
[6] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic Pro-𝑝 Groups, 2nd ed., Cambridge Stud. Adv. Math. 61, Cambridge University, Cambridge, 1999. 10.1017/CBO9780511470882Suche in Google Scholar
[7] S. Fisher and P. Gartside, On the space of subgroups of a compact group. I, Topology Appl. 156 (2009), no. 5, 862–871. 10.1016/j.topol.2008.11.005Suche in Google Scholar
[8] A. M. Gleason, The structure of locally compact groups, Duke Math. J. 18 (1951), 85–104. 10.1215/S0012-7094-51-01808-XSuche in Google Scholar
[9] V. M. Gluškov, Locally nilpotent locally bicompact groups, Trudy Moskov. Mat. Obšč. 4 (1955), 291–332. Suche in Google Scholar
[10] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40. Suche in Google Scholar
[11] H. Hamrouni and B. Kadri, On the compact space of closed subgroups of locally compact groups, J. Lie Theory 24 (2014), no. 3, 715–723. Suche in Google Scholar
[12] H. Hamrouni and B. Kadri, Locally compact groups with totally disconnected space of subgroups, J. Group Theory 22 (2019), no. 1, 119–132. 10.1515/jgth-2018-0034Suche in Google Scholar
[13] W. Herfort, K. H. Hofmann and F. G. Russo, Periodic Locally Compact Groups, De Gruyter Stud. Math. 71, De Gruyter, Berlin, 2019. 10.1515/9783110599190Suche in Google Scholar
[14] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I: Structure of Topological Groups. Integration Theory, Group Representations, Grundlehren Math. Wiss. 115, Academic Press, New York, 1963. Suche in Google Scholar
[15] K. H. Hofmann, J. R. Liukkonen and M. W. Mislove, Compact extensions of compactly generated nilpotent groups are pro-Lie, Proc. Amer. Math. Soc. 84 (1982), no. 3, 443–448. 10.1090/S0002-9939-1982-0640250-1Suche in Google Scholar
[16] K. H. Hofmann and S. A. Morris, The Structure of Compact Groups, De Gruyter Stud. Math. 25, De Gruyter, Berlin, 2013. 10.1515/9783110296792Suche in Google Scholar
[17] K. H. Hofmann, S. A. Morris and M. Stroppel, Varieties of topological groups, Lie groups and SIN-groups, Colloq. Math. 70 (1996), no. 2, 151–163. 10.4064/cm-70-2-151-163Suche in Google Scholar
[18] K. H. Hofmann and G. A. Willis, Continuity characterizing totally disconnected locally compact groups, J. Lie Theory 25 (2015), no. 1, 1–7. Suche in Google Scholar
[19] W. Jaworski and C. R. E. Raja, The Choquet–Deny theorem and distal properties of totally disconnected locally compact groups of polynomial growth, New York J. Math. 13 (2007), 159–174. Suche in Google Scholar
[20] L. Nachbin, The Haar Integral, D. Van Nostrand, Princeton, 1965. Suche in Google Scholar
[21] T. W. Palmer, Banach Algebras and the General Theory of ∗-Algebras. Vol. 2, Encyclopedia Math. Appl. 79, Cambridge University, Cambridge, 2001. 10.1017/CBO9780511574757Suche in Google Scholar
[22] V. P. Platonov, Locally projectively nilpotent subgroups and nilelements in topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 1257–1274; translation in Amer. Math. Soc. Transl. 66 (1968), 111–129. 10.1090/trans2/066/04Suche in Google Scholar
[23] V. P. Platonov, The structure of topological locally projectively nilpotent groups and groups with a normalizer condition, Mat. Sb. (N.S.) 72 (114) (1967), 38–58. 10.1070/SM1967v001n01ABEH001960Suche in Google Scholar
[24] I. V. Protasov and Y. V. A. Tsybenko, Connectedness in the space of subgroups (in Russian), Ukrain. Mat. Zh. 35 (1983), no. 3, 382–385; translation in Ukrainian Math. J. 35 (1983), 332–334. 10.1007/BF01092189Suche in Google Scholar
[25] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups. Part 1, Ergeb. Math. Grenzgeb. (3) 62, Springer, New York, 1972. 10.1007/978-3-662-11747-7Suche in Google Scholar
[26] K. A. Ross, Closed subgroups of compactly generated LCA groups are compactly generated, Topology Appl. 259 (2019), 378–383. 10.1016/j.topol.2019.02.042Suche in Google Scholar
[27] I. Schochetman, Nets of subgroups and amenability, Proc. Amer. Math. Soc. 29 (1971), 397–403. 10.1090/S0002-9939-1971-0281837-0Suche in Google Scholar
[28] M. Stroppel, Locally Compact Groups, EMS Textb. Math., European Mathematical Society (EMS), Zürich, 2006. 10.4171/016Suche in Google Scholar
[29] P. Wesolek, A survey of elementary totally disconnected locally compact groups, 2016 MATRIX Annals, MATRIX Book Ser. 1, Springer, Cham (2018), 593–611. 10.1007/978-3-319-72299-3_25Suche in Google Scholar
[30] G. Willis, Totally disconnected, nilpotent, locally compact groups, Bull. Aust. Math. Soc. 55 (1997), no. 1, 143–146. 10.1017/S0004972700030604Suche in Google Scholar
[31] J. S. Wilson, Profinite Groups, Oxford University, New York, 1998. Suche in Google Scholar
[32] H. Yamabe, A generalization of a theorem of Gleason, Ann. of Math. (2) 58 (1953), 351–365. 10.2307/1969792Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Some simple biset functors
- Explicit universal minimal constants for polynomial growth of groups
- Shift dynamics of the groups of Fibonacci type
- Finitely generated subgroups and Chabauty topology in totally disconnected locally compact groups
- The number of set-orbits of a solvable permutation group
- On finite 𝜎-tower groups
- Orders of inner-diagonal automorphisms of some simple groups of Lie type
- The Lie algebra structure of the degree one Hochschild cohomology of the blocks of the sporadic Mathieu groups
- M, B and Co1 are recognisable by their prime graphs
Artikel in diesem Heft
- Frontmatter
- Some simple biset functors
- Explicit universal minimal constants for polynomial growth of groups
- Shift dynamics of the groups of Fibonacci type
- Finitely generated subgroups and Chabauty topology in totally disconnected locally compact groups
- The number of set-orbits of a solvable permutation group
- On finite 𝜎-tower groups
- Orders of inner-diagonal automorphisms of some simple groups of Lie type
- The Lie algebra structure of the degree one Hochschild cohomology of the blocks of the sporadic Mathieu groups
- M, B and Co1 are recognisable by their prime graphs