Startseite New generalized trapezoidal type integral inequalities with applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New generalized trapezoidal type integral inequalities with applications

  • Artion Kashuri EMAIL logo , Ghulam Farid und Erhan Set
Veröffentlicht/Copyright: 11. Dezember 2020

Abstract

Trapezoidal inequalities for functions of diverse nature are useful in numerical computations. The authors have proved an identity for a generalized integral operator via a differentiable function. By applying the established identity, the generalized trapezoidal type integral inequalities have been discovered. It is pointed out that the results of this research provide integral inequalities for almost all fractional integrals discovered in the recent decades. Various special cases have been identified. Some applications of presented results have been analyzed.

References

[1] A. O. Akdemir, A. Ekinci and E. Set, Conformable fractional integrals and related new integral inequalities, J. Nonlinear Convex Anal. 18 (2017), no. 4, 661–674. Suche in Google Scholar

[2] T. Antczak, Mean value in invexity analysis, Nonlinear Anal. 60 (2005), no. 8, 1473–1484. 10.1016/j.na.2004.11.005Suche in Google Scholar

[3] S. M. Aslani, M. R. Delavar and S. M. Vaezpour, Inequalities of Fejér type related to generalized convex functions with applications, Int. J. Anal. Appl. 16 (2018), no. 1, 38–49. 10.1155/2018/5864091Suche in Google Scholar

[4] F. Chen and S. Wu, Several complementary inequalities to inequalities of Hermite–Hadamard type for s-convex functions, J. Nonlinear Sci. Appl. 9 (2016), no. 2, 705–716. 10.22436/jnsa.009.02.32Suche in Google Scholar

[5] Y.-M. Chu, M. A. Khan, T. U. Khan and T. Ali, Generalizations of Hermite–Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl. 9 (2016), no. 6, 4305–4316. 10.22436/jnsa.009.06.72Suche in Google Scholar

[6] M. R. Delavar and M. De La Sen, Some generalizations of Hermite–Hadamard type inequalities, Springer Plus 5 (2016), Paper No. 1661. 10.1186/s40064-016-3301-3Suche in Google Scholar

[7] M. R. Delavar and S. S. Dragomir, On η-convexity, Math. Inequal. Appl. 20 (2017), no. 1, 203–216. 10.7153/mia-20-14Suche in Google Scholar

[8] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91–95. 10.1016/S0893-9659(98)00086-XSuche in Google Scholar

[9] A. Ekinci and M. E. Özdemir, Some new integral inequalities via Riemann–Liouville integral operators, Appl. Comput. Math. 18 (2019), no. 3, 288–295. Suche in Google Scholar

[10] G. Farid and A. U. Rehman, Generalizations of some integral inequalities for fractional integrals, Ann. Math. Sil. 32 (2018), no. 1, 201–214. 10.1515/amsil-2017-0010Suche in Google Scholar

[11] I. İşcan and M. Kunt, Fractional Hermite–Hadamard–Fejer type inequalities for GA-convex functions, Turkish J. Inequalities 2 (2018), 1–20. 10.7603/s40956-016-0004-2Suche in Google Scholar

[12] M. Jleli, D. O’Regan and B. Samet, On Hermite–Hadamard type inequalities via generalized fractional integrals, Turkish J. Math. 40 (2016), no. 6, 1221–1230. 10.3906/mat-1507-79Suche in Google Scholar

[13] A. Kashuri and R. Liko, Ostrowski type fractional integral operators for generalized (r;s,m,φ)-preinvex functions, Appl. Appl. Math. 12 (2017), no. 2, 1017–1035. Suche in Google Scholar

[14] A. Kashuri and R. Liko, Some new Hermite–Hadamard type inequalities and their applications, Studia Sci. Math. Hungar. 56 (2019), no. 1, 103–142. 10.1556/012.2019.56.1.1418Suche in Google Scholar

[15] A. Kashuri, E. Set and R. Liko, Some new fractional trapezium-type inequalities for preinvex functions, Fractal Fract. 3 (2019), 1–13. 10.3390/fractalfract3010012Suche in Google Scholar

[16] M. A. Khan, Y. M. Chu, A. Kashuri and R. Liko, Hermite–Hadamard type fractional integral inequalities for MT(r;g,m,ϕ)-preinvex functions, J. Comput. Anal. Appl. 26 (2019), no. 8, 1487–1503. Suche in Google Scholar

[17] M. A. Khan, Y.-M. Chu, A. Kashuri, R. Liko and G. Ali, Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations, J. Funct. Spaces 2018 (2018), Article ID 6928130. 10.1155/2018/6928130Suche in Google Scholar

[18] W. Liu, W. Wen and J. Park, Hermite–Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl. 9 (2016), no. 3, 766–777. 10.22436/jnsa.009.03.05Suche in Google Scholar

[19] C. Luo, T. S. Du, M. A. Khan, A. Kashuri and Y. Shen, Some k-fractional integrals inequalities through generalized Λϕm-MT-preinvexity, J. Comput. Anal. Appl. 27 (2019), no. 4, 690–705. Suche in Google Scholar

[20] M. V. Mihai, Some Hermite–Hadamard type inequalities via Riemann–Liouville fractional calculus, Tamkang J. Math. 44 (2013), no. 4, 411–416. 10.5556/j.tkjm.44.2013.1218Suche in Google Scholar

[21] S. Mubeen and G. M. Habibullah, k-fractional integrals and application, Int. J. Contemp. Math. Sci. 7 (2012), no. 1–4, 89–94. Suche in Google Scholar

[22] I. Mumcu, E. Set and A. O. Akdemir, Hermite–Hadamard type inequalities for harmonically convex functions via Katugampola fractional integrals, Miskolc Math. Notes 20 (2019), no. 1, 409–424. 10.18514/MMN.2019.2722Suche in Google Scholar

[23] D. Nie, S. Rashid, A. O. Akdemir, D. Baleanu and J.-B. Liu, On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications, Mathematics 7 (2019), no. 8, Paper No. 727. 10.3390/math7080727Suche in Google Scholar

[24] N. Okur and F. B. Yalçın, Two-dimensional operator harmonically convex functions and related generalized inequalities, Turkish J. Sci. 4 (2019), no. 1, 30–38. Suche in Google Scholar

[25] O. Omotoyinbo and A. Mogbodemu, Some new Hermite–Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech. 1 (2014), 1–12. 10.1155/2014/796132Suche in Google Scholar

[26] M. E. Özdemir, S. S. Dragomir and c. Yıldız, The Hadamard inequality for convex function via fractional integrals, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013), no. 5, 1293–1299. 10.1016/S0252-9602(13)60081-8Suche in Google Scholar

[27] M. Z. Sarikaya and F. Ertuğral, On the generalized Hermite–Hadamard inequalities, preprint (2017), https://www.researchgate.net/publication/321760443. Suche in Google Scholar

[28] M. Z. Sarikaya and H. Yildirim, On generalization of the Riesz potential, Indian J. Math. Math. Sci. 3 (2007), no. 2, 231–235. Suche in Google Scholar

[29] E. Set, A. O. Akdemir and E. A. Alan, Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities involving fractional integral operators, Filomat 33 (2019), no. 8, 2367–2380. 10.2298/FIL1908367SSuche in Google Scholar

[30] E. Set, A. O. Akdemir and B. Çelik, On generalization of Fejér type inequalities via fractional integral operators, Filomat 32 (2018), no. 16, 5537–5547. 10.2298/FIL1816537SSuche in Google Scholar

[31] E. Set, M. A. Noor, M. U. Awan and A. Gözpinar, Generalized Hermite–Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl. 2017 (2017), Paper No. 169. 10.1186/s13660-017-1444-6Suche in Google Scholar

[32] H. Wang, T. Du and Y. Zhang, k-fractional integral trapezium-like inequalities through (h,m)-convex and (α,m)-convex mappings, J. Inequal. Appl. 2017 (2017), Paper No. 311. 10.1186/s13660-017-1586-6Suche in Google Scholar

[33] T. Weir and B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl. 136 (1988), no. 1, 29–38. 10.1016/0022-247X(88)90113-8Suche in Google Scholar

[34] B.-Y. Xi and F. Qi, Some integral inequalities of Hermite–Hadamard type for convex functions with applications to means, J. Funct. Spaces Appl. 2012 (2012), Article ID 980438. 10.1155/2012/980438Suche in Google Scholar

[35] H. Yaldız and A. O. Akdemir, Katugampola fractional integrals within the class of convex functions, Turkish J. Sci. 3 (2018), no. 1, 40–50. Suche in Google Scholar

[36] X.-M. Zhang, Y.-M. Chu and X.-H. Zhang, The Hermite–Hadamard type inequality of GA-convex functions and its applications, J. Inequal. Appl. 2010 (2010), Art. ID 507560. 10.1155/2010/507560Suche in Google Scholar

[37] Y. Zhang, T.-S. Du, H. Wang, Y.-J. Shen and A. Kashuri, Extensions of different type parameterized inequalities for generalized (m,h)-preinvex mappings via k-fractional integrals, J. Inequal. Appl. 2018 (2018), Paper No. 49. 10.1186/s13660-018-1639-5Suche in Google Scholar PubMed PubMed Central

Received: 2019-07-09
Revised: 2019-11-29
Accepted: 2019-11-30
Published Online: 2020-12-11
Published in Print: 2021-06-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2020-2028/html
Button zum nach oben scrollen