Startseite On strongly quasilinear elliptic systems with weak monotonicity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On strongly quasilinear elliptic systems with weak monotonicity

  • Elhoussine Azroul und Farah Balaadich EMAIL logo
Veröffentlicht/Copyright: 9. Januar 2021

Abstract

In this paper, we prove existence results in the setting of Sobolev spaces for a strongly quasilinear elliptic system by means of Young measures and mild monotonicity assumptions.

MSC 2010: 35J60; 35D05; 46E30

References

[1] Y. Akdim, E. Azroul and A. Benkirane, Existence of solution for quasilinear degenerated elliptic unilateral problems, Ann. Math. Blaise Pascal 10 (2003), no. 1, 1–20. 10.5802/ambp.166Suche in Google Scholar

[2] F. Augsburger and N. Hungerbühler, Quasilinear elliptic systems in divergence form with weak monotonicity and nonlinear physical data, Electron. J. Differential Equations 2004 (2004), Paper No. 144. Suche in Google Scholar

[3] E. Azroul and F. Balaadich, A weak solution to quasilinear elliptic problems with perturbed gradient, Rend. Circ. Mat. Palermo (2) (2020), 10.1007/s12215-020-00488-4. 10.1007/s12215-020-00488-4Suche in Google Scholar

[4] E. Azroul and F. Balaadich, Quasilinear elliptic systems in perturbed form, Int. J. Nonlinear Anal. Appl. 10 (2019), no. 2, 255–266. Suche in Google Scholar

[5] E. Azroul and F. Balaadich, Weak solutions for generalized p-Laplacian systems via Young measures, Moroccan J. Pure Appl. Anal. 4 (2018), no. 2, 77–84. 10.1515/mjpaa-2018-0008Suche in Google Scholar

[6] E. Azroul, A. Benkirane and O. Filali, Strongly nonlinear degenerated unilateral problems with L1 data, Proceedings of the 2002 Fez Conference on Partial Differential Equations, Electron. J. Differ. Equ. Conf. 9, Southwest Texas State University, San Marcos (2002), 49–64. Suche in Google Scholar

[7] J. M. Ball, A version of the fundamental theorem for Young measures, PDEs and Continuum Models of Phase Transitions (Nice 1988), Lecture Notes in Phys. 344, Springer, Berlin (1989), 207–215. 10.1007/BFb0024945Suche in Google Scholar

[8] H. Brézis and F. E. Browder, Strongly nonlinear elliptic boundary value problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 5 (1978), no. 3, 587–603. Suche in Google Scholar

[9] J. Chabrowski and K. Zhang, Quasi-monotonicity and perturbated systems with critical growth, Indiana Univ. Math. J. 41 (1992), no. 2, 483–504. 10.1512/iumj.1992.41.41028Suche in Google Scholar

[10] G. Dal Maso and F. Murat, Almost everywhere convergence of gradients of solutions to nonlinear elliptic systems, Nonlinear Anal. 31 (1998), no. 3–4, 405–412. 10.1016/S0362-546X(96)00317-3Suche in Google Scholar

[11] G. Dolzmann, N. Hungerbühler and S. Müller, Non-linear elliptic systems with measure-valued right hand side, Math. Z. 226 (1997), no. 4, 545–574. 10.1007/PL00004354Suche in Google Scholar

[12] G. B. Folland, Real Analysis, 2nd ed., John Wiley & Sons, New York, 1999. Suche in Google Scholar

[13] P. Hess, A strongly nonlinear elliptic boundary value problem, J. Math. Anal. Appl. 43 (1973), 241–249. 10.1016/0022-247X(73)90272-2Suche in Google Scholar

[14] N. Hungerbühler, A refinement of Ball’s theorem on Young measures, New York J. Math. 3 (1997), 48–53. Suche in Google Scholar

[15] N. Hungerbühler, Quasilinear elliptic systems in divergence form with weak monotonicity, New York J. Math. 5 (1999), 83–90. Suche in Google Scholar

[16] R. Landes, On Galerkin’s method in the existence theory of quasilinear elliptic equations, J. Funct. Anal. 39 (1980), no. 2, 123–148. 10.1016/0022-1236(80)90009-9Suche in Google Scholar

[17] R. Landes, On the existence of weak solutions of perturbated systems with critical growth, J. Reine Angew. Math. 393 (1989), 21–38. 10.1515/crll.1989.393.21Suche in Google Scholar

[18] M. A. Sychev, Characterization of homogeneous gradient Young measures in case of arbitrary integrands, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 29 (2000), no. 3, 531–548. 10.1023/A:1002050303320Suche in Google Scholar

[19] M. Valadier, A course on Young measures, Rend. Istit. Mat. Univ. Trieste 26 (1994), 349–394. Suche in Google Scholar

[20] J. R. L. Webb, Boundary value problems for strongly nonlinear elliptic equations, J. Lond. Math. Soc. (2) 21 (1980), no. 1, 123–132. 10.1112/jlms/s2-21.1.123Suche in Google Scholar

[21] K. Yosida, Functional Analysis, 6th ed., Grundlehren Math. Wiss. 123, Springer, Berlin, 1980. Suche in Google Scholar

[22] E. Zeidler, Nonlinear Functional Analysis and its Applications. I, Springer, New York, 1986. 10.1007/978-1-4612-4838-5Suche in Google Scholar

Received: 2018-11-25
Revised: 2020-06-30
Accepted: 2020-08-26
Published Online: 2021-01-09
Published in Print: 2021-06-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2020-2041/html
Button zum nach oben scrollen