Startseite Optical, electrical, dielectric and mechanical properties of microcrystalline cellulose/starch based biocomposite films
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optical, electrical, dielectric and mechanical properties of microcrystalline cellulose/starch based biocomposite films

  • Othmane Rhalmi EMAIL logo , Khadija Ben Zarouala , Taoufik Garmim , Khadija Chouni , Adil El Meskine , Redouane Lahkale EMAIL logo und Elmouloudi Sabbar
Veröffentlicht/Copyright: 29. Oktober 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, we have synthesized biocomposite films based on starch reinforced with microcrystalline cellulose (MCC) with different MCC/starch weight contents (0, 1, 3, 5, and 7 %). These films were characterized by various techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDX), which showed dispersed and biocompatible structures for MCC and starch. It was found that the increase in MCC content (from 0 to 7 wt%) led to decreasing the water solubility, and reducing the absorption coefficients, transmission percentages and electrical conductivity. However, the improvement of dielectric and mechanical properties was demonstrated by decreasing the dielectric loss tangent and increasing the Young’s modulus, respectively making them suitable for dielectric and mechanical applications.


Corresponding authors: Othmane Rhalmi and Redouane Lahkale, Department of Chemistry, Faculty of Sciences, Laboratory of Material’s Physical-Chemicals, University of Chouaîb Doukkali, El Jadida, Morocco, E-mail: (O. Rhalmi), (R. Lahkale)

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

Avérous, L., Fringant, C., and Moro, L. (2001). Plasticized starch-cellulose interactions in polysaccharide composites. Polymer 42: 6565–6572, https://doi.org/10.1016/S0032-3861(01)00125-2.Suche in Google Scholar

Babaee, M., Jonoobi, M., Hamzeh, Y., and Ashori, A. (2015). Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydr. Polym. 132: 1–8, https://doi.org/10.1016/j.carbpol.2015.06.043.Suche in Google Scholar PubMed

Bangar, S.P. and Whiteside, W.S. (2021). Nano-cellulose reinforced starch bio composite films – a review on green composites. Int. J. Biol. Macromol. 185: 849–860, https://doi.org/10.1016/j.ijbiomac.2021.07.017.Suche in Google Scholar PubMed

Ben Zarouala, K., Elhatimi, W., Lahkale, R., Rhalmi, O., Chouni, K., El Kasiti, W., and Sabbar, E. (2023). Enhancing the light absorption and dielectric properties of nitrate intercalated Zn–Al Layered double hydroxide through anionic exchange with ethylenediaminetetraacetate. Appl. Clay Sci. 238: 106928, https://doi.org/10.1016/j.clay.2023.106928.Suche in Google Scholar

Bin-Dahman, O.A., Rahaman, M., Khastgir, D., and Al-Harthi, M.A. (2018). Electrical and dielectric properties of poly(vinyl alcohol)/starch/graphene nanocomposites. Can. J. Chem. Eng. 96: 903–911, https://doi.org/10.1002/cjce.22999.Suche in Google Scholar

Bruni, G.P., de Oliveira, J.P., Fonseca, L.M., da Silva, F.T., Dias, A.R.G., and da Rosa Zavareze, E. (2020). Biocomposite films based on phosphorylated wheat starch and cellulose nanocrystals from rice, oat, and Eucalyptus husks. Starch/Staerke 72: 1900051, https://doi.org/10.1002/star.201900051.Suche in Google Scholar

Buléon, A., Colonna, P., Planchot, V., and Ball, S. (1998). Starch granules: structure and biosynthesis. Int. J. Biol. Macromol. 23: 85–112, https://doi.org/10.1016/S0141-8130(98)00040-3.Suche in Google Scholar PubMed

Cao, J., Sun, X., Lu, C., Zhou, Z., Zhang, X., and Yuan, G. (2016). Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites. Carbohydr. Polym. 149: 60–67, https://doi.org/10.1016/j.carbpol.2016.04.086.Suche in Google Scholar PubMed

Chang, C.C., Trinh, B.M., and Mekonnen, T.H. (2021). Robust multiphase and multilayer starch/polymer (TPS/PBAT) film with simultaneous oxygen/moisture barrier properties. J. Colloid Interface Sci. 593: 290–303, https://doi.org/10.1016/j.jcis.2021.03.010.Suche in Google Scholar PubMed

Chen, Q.J., Zhou, L.L., Zou, J.Q., and Gao, X. (2019). The preparation and characterization of nanocomposite film reinforced by modified cellulose nanocrystals. Int. J. Biol. Macromol. 132: 1155–1162, https://doi.org/10.1016/j.ijbiomac.2019.04.063.Suche in Google Scholar PubMed

Chen, C., Zong, L., Wang, J., and Xie, J. (2021). Microfibrillated cellulose reinforced starch/polyvinyl alcohol antimicrobial active films with controlled release behavior of cinnamaldehyde. Carbohydr. Polym. 272: 118448, https://doi.org/10.1016/j.carbpol.2021.118448.Suche in Google Scholar PubMed

Cho, J., Joshi, M.S., and Sun, C.T. (2006). Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Technol. 66: 941–1952, https://doi.org/10.1016/j.compscitech.2005.12.028.Suche in Google Scholar

Dai, L., Yu, H., Zhang, J., and Cheng, F. (2021). Preparation and characterization of cross-linked starch nanocrystals and self-reinforced starch-based nanocomposite films. Int. J. Biol. Macromol. 181: 868–876, https://doi.org/10.1016/j.ijbiomac.2021.04.020.Suche in Google Scholar PubMed

Deng, S., Liao, J., Wu, H., Cao, M., Fan, M., Essawy, H., Du, G., and Zhou, X. (2023). Multifunctional modification of biodegradable casein-microcrystalline cellulose composite film with UV-absorbing property using wood bark extract. Ind. Crops Prod. 192: 116080, https://doi.org/10.1016/j.indcrop.2022.116080.Suche in Google Scholar

Devi, L.S., Das, A.J., and Das, A.B. (2022). Characterization of high amylose starch-microcrystalline cellulose based floatable gel for enhanced gastrointestinal retention and drug delivery. Carbohydr. Polym. Technol. Appl. 3: 100185, https://doi.org/10.1016/j.carpta.2022.100185.Suche in Google Scholar

Dogan, N. and McHugh, T.H. (2007). Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films. J. Food Sci. 72: E016–E022, https://doi.org/10.1111/j.1750-3841.2006.00237.x.Suche in Google Scholar PubMed

El Hasnaoui, M., Graça, M.P.F., Achour, M.E., Costa, L.C., Outzourhit, A., Oueriagli, A., and El Harfi, A. (2010). Effect of temperature on the electrical properties of copolymer/carbon black mixtures. J. Non Cryst. Solids 356: 1536–1541, https://doi.org/10.1016/j.jnoncrysol.2010.05.053.Suche in Google Scholar

Elhatimi, W., Bouragba, F.Z., Lahkale, R., Sadik, R., Lebbar, N., Siniti, M., and Sabbar, E. (2018). Electric and dielectric behavior of copper-chromium layered double hydroxide intercalated with dodecyl sulfate anions using impedance spectroscopy. Solid State Sci. 79: 23–29, https://doi.org/10.1016/j.solidstatesciences.2018.03.006.Suche in Google Scholar

Elloumi, I., Koubaa, A., Kharrat, W., Bradai, C., and Elloumi, A. (2021). Dielectric properties of wood-polymer composites: effects of frequency, fiber nature, proportion, and chemical composition. J. Compos. Sci. 5: 141, https://doi.org/10.3390/jcs5060141.Suche in Google Scholar

Fourati, Y., Magnin, A., Putaux, J.L., and Boufi, S. (2020). One-step processing of plasticized starch/cellulose nanofibrils nanocomposites via twin-screw extrusion of starch and cellulose fibers. Carbohydr. Polym. 229: 115554, https://doi.org/10.1016/j.carbpol.2019.115554.Suche in Google Scholar PubMed

Gürler, N. and Torğut, G. (2021). Graphene-reinforced potato starch composite films: improvement of mechanical, barrier and electrical properties. Polym. Compos. 42: 173–180, https://doi.org/10.1002/pc.25816.Suche in Google Scholar

Hietala, M., Mathew, A.P., and Oksman, K. (2013). Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur. Polym. J. 49: 950–956, https://doi.org/10.1016/j.eurpolymj.2012.10.016.Suche in Google Scholar

Ilyas, R.A., Sapuan, S.M., Ishak, M.R., and Zainudin, E.S. (2018). Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydr. Polym. 202: 186–202, https://doi.org/10.1016/j.carbpol.2018.09.002.Suche in Google Scholar PubMed

Islam, M.R. and Mollik, S.I. (2020). Enhanced electrochemical performance of flexible and eco-friendly starch/graphene oxide nanocomposite. Heliyon 6: 10, https://doi.org/10.1016/j.heliyon.2020.e05292.Suche in Google Scholar PubMed PubMed Central

Jabli, M., Sebeia, N., El-Ghoul, Y., Soury, R., Al-Ghamdi, Y.O., and Saleh, T.A. (2023). Chemical modification of microcrystalline cellulose with polyethyleneimine and hydrazine: characterization and evaluation of its adsorption power toward anionic dyes. Int. J. Biol. Macromol. 229: 210–223, https://doi.org/10.1016/j.ijbiomac.2022.12.309.Suche in Google Scholar PubMed

Jacob, M., Varughese, K.T., and Thomas, S. (2006). Dielectric characteristics of sisal-oil palm hybrid biofibre reinforced natural rubber biocomposites. J. Mater. Sci. 41: 5538–5547, https://doi.org/10.1007/s10853-006-0298-y.Suche in Google Scholar

Jafarzadeh, S., Mohammadi Nafchi, A., Salehabadi, A., Oladzad-abbasabadi, N., and Jafari, S.M. (2021). Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Adv. Colloid Interface Sci. 291: 102405, https://doi.org/10.1016/j.cis.2021.102405.Suche in Google Scholar PubMed

Kambale, R.C., Shaikh, P.A., Bhosale, C.H., Rajpure, K.Y., and Kolekar, Y.D. (2009). Dielectric properties and complex impedance spectroscopy studies of mixed Ni–Co ferrites. Smart Mater. Struct. 18: 085014, https://doi.org/10.1088/0964-1726/18/8/085014.Suche in Google Scholar

Kandhol, G., Wadhwa, H., Chand, S., Mahendia, S., and Kumar, S. (2019). Study of dielectric relaxation behavior of composites of poly (vinyl alchohol) (PVA) and reduced graphene oxide (RGO). Vacuum 160: 384–393, https://doi.org/10.1016/j.vacuum.2018.11.051.Suche in Google Scholar

Karamysheva, A., Valente, B.F.A., Almeida, A., Silvestre, A.J.D., Vilela, C., and Freire, C.S.R. (2023). Biobased ternary films of thermoplastic starch, bacterial nanocellulose and gallic acid for active food packaging. Food Hydrocolloids 144: 108934, https://doi.org/10.1016/j.foodhyd.2023.108934.Suche in Google Scholar

Kaur, N., Arya, A., Kumar, R., Kaur, J., Savita, Khattar, N., Diwan, P.K., and Sharma, A. (2023). Au–Ag NPs embedded sago starch-sodium alginate composites: an investigation of structural, thermal and dielectric properties for applications in flexible electronic devices. Mater. Sci. Eng. B 293: 116495, https://doi.org/10.1016/j.mseb.2023.116495.Suche in Google Scholar

Khouaja, A., Koubaa, A., and Ben Daly, H. (2021). Dielectric properties and thermal stability of cellulose high-density polyethylene bio-based composites. Ind. Crops Prod. 171: 113928, https://doi.org/10.1016/j.indcrop.2021.113928.Suche in Google Scholar

Klemm, D., Heublein, B., Fink, H.P., and Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. – Int. Ed. 44: 3358–3393, https://doi.org/10.1002/anie.200460587.Suche in Google Scholar PubMed

Kontturi, E. and Spirk, S. (2019). Ultrathin films of cellulose: a materials perspective. Front. Chem. 7: 1–18, https://doi.org/10.3389/fchem.2019.00488.Suche in Google Scholar PubMed PubMed Central

Körpınar, B., Öztürk, B.C., Çam, N.F., and Akat, H. (2024). Novel starch–tungsten (VI) oxide biocomposites: preparation, characterization, and comparisons between experimental and theoretical photon attenuation coefficients. Int. J. Biol. Macromol. 270: 132342, https://doi.org/10.1016/j.ijbiomac.2024.132342.Suche in Google Scholar PubMed

Kreit, L., Bouknaitir, I., Zyane, A., El Hasnaoui, M., Achour, M.E., Costa, L.C., and Belfkira, A. (2019). Electrical conductivity and dielectric relaxation studies of biocomposites based on green microcrystalline cellulose-reinforced vinyl resin matrix. J. Compos. Mater. 53: 2801–2808, https://doi.org/10.1177/0021998319840420.Suche in Google Scholar

Kunle, O.O. (2020). Starch source and its impact on pharmaceutical applications. In: Emeje, M.O. (Ed.). Chemical proproperties of starch. IntechOpen, London.Suche in Google Scholar

Lahkale, R., Sadik, R., Elhatimi, W., Bouragba, F.Z., Assekouri, A., Chouni, K., Rhalmi, O., and Sabbar, E. (2022). Optical, electrical and dielectric properties of mixed metal oxides derived from Mg–Al layered double dydroxides based solid solution series. Phys. B Condens. Matter 626: 413367, https://doi.org/10.1016/j.physb.2021.413367.Suche in Google Scholar

Lertsarawut, P., Laksee, S., Rattanawongwiboon, T., and Hemvichian, K. (2024). Eco-friendly alginate-starch-based water super-absorbent beads spherically shaped and uniformly fabricated via spherification and radiation-assisted polymerization. Carbohydr. Polym. Technol. Appl. 7: 100456, https://doi.org/10.1016/j.carpta.2024.100456.Suche in Google Scholar

Li, K., Jin, S., Li, X., Shi, S.Q., and Li, J. (2021). A green bio-inspired chelating design for improving the electrical conductivity of flexible biopolymer-based composites. J. Clean. Prod. 285: 125504, https://doi.org/10.1016/j.jclepro.2020.125504.Suche in Google Scholar

Li, H., Shi, H., He, Y., Fei, X., and Peng, L. (2020). Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. Int. J. Biol. Macromol. 164: 4104–4112, https://doi.org/10.1016/j.ijbiomac.2020.09.010.Suche in Google Scholar PubMed

Liu, B., Essawy, H., Deng, S., Zhao, C., Du, G., Hou, D., Zhou, X., and Zhang, J. (2022). High performance bio-based gelatinized starch-furanic resin derived foam reinforced by microcrystalline cellulose. Ind. Crop. Prod. 194: 116282, https://doi.org/10.1016/j.indcrop.2023.116282.Suche in Google Scholar

Marwan, M., Indarti, E., Bairwan, R.D., Khalil, H.P.S.A., Abdullah, C.K., and Ahmad, A. (2024). Enhancement micro filler spent coffee grounds in catalyst – chemically modified bast fibers reinforced biodegradable materials. Bioresour. Technol. Rep. 25: 101723, https://doi.org/10.1016/j.biteb.2023.101723.Suche in Google Scholar

Matur, U.C., Akyol, S., Baydoğan, N., and Cimenoglu, H. (2015). The optical properties of CIGS thin films derived by sol-gel dip coating process at different withdrawal speed. Procedia – Soc. Behav. Sci. 195: 1762–1767, https://doi.org/10.1016/j.sbspro.2015.06.328.Suche in Google Scholar

Menzel, C. (2020). Improvement of starch films for food packaging through a three-principle approach: antioxidants, cross-linking and reinforcement. Carbohydr. Polym. 250: 116828, https://doi.org/10.1016/j.carbpol.2020.116828.Suche in Google Scholar PubMed

Merci, A., Marim, R.G., Urbano, A., and Mali, S. (2019). Films based on cassava starch reinforced with soybean hulls or microcrystalline cellulose from soybean hulls. Food Packag. Shelf Life 20: 100321, https://doi.org/10.1016/j.fpsl.2019.100321.Suche in Google Scholar

Molavi, H., Behfar, S., Ali Shariati, M., Kaviani, M., and Atarod, S. (2015). A review on biodegradable starch based film. J. Microbiol. Biotechnol. Food Sci. 4: 456–461, https://doi.org/10.15414/jmbfs.2015.4.5.456-461.Suche in Google Scholar

Nasri-Nasrabadi, B., Behzad, T., and Bagheri, R. (2014). Preparation and characterization of cellulose nanofiber reinforced thermoplastic starch composites. Fibers Polym. 15: 347–354, https://doi.org/10.1007/s12221-014-0347-0.Suche in Google Scholar

Nessi, V., Falourd, X., Maigret, J.E., Cahier, K., D’Orlando, A., Descamps, N., Gaucher, V., Chevigny, C., and Lourdin, D. (2019). Cellulose nanocrystals-starch nanocomposites produced by extrusion: structure and behavior in physiological conditions. Carbohydr. Polym. 225: 115123, https://doi.org/10.1016/j.carbpol.2019.115123.Suche in Google Scholar PubMed

Noshirvani, N., Hong, W., Ghanbarzadeh, B., Fasihi, H., and Montazami, R. (2018). Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films. Int. J. Biol. Macromol. 107: 2065–2074, https://doi.org/10.1016/j.ijbiomac.2017.10.083.Suche in Google Scholar PubMed

Othman, S.H., Nordin, N., Azman, N.A.A., Tawakkal, I.S.M.A., and Basha, R.K. (2021). Effects of nanocellulose fiber and thymol on mechanical, thermal, and barrier properties of corn starch films. Int. J. Biol. Macromol. 183: 1352–1361, https://doi.org/10.1016/j.ijbiomac.2021.05.082.Suche in Google Scholar PubMed

Pelissari, F.M., Andrade-Mahecha, M.M., do Amaral Sobral, P.J., and Menegalli, F.C. (2017). Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J. Colloid Interface Sci. 505: 154–167, https://doi.org/10.1016/j.jcis.2017.05.106.Suche in Google Scholar PubMed

Punia Bangar, S., Whiteside, W.S., Dunno, K.D., Cavender, G.A., Dawson, P., and Love, R. (2021). Starch-based bio-nanocomposites films reinforced with cellulosic nanocrystals extracted from Kudzu (Pueraria montana) vine. Int. J. Biol. Macromol. 203: 350–360, https://doi.org/10.1016/j.ijbiomac.2022.01.133.Suche in Google Scholar PubMed

Quilaqueo Gutiérrez, M., Echeverría, I., Ihl, M., Bifani, V., and Mauri, A.N. (2012). Carboxymethylcellulose-montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohydr. Polym. 87: 1495–1502, https://doi.org/10.1016/j.carbpol.2011.09.040.Suche in Google Scholar

Raquez, J.M., Nabar, Y., Narayan, R., and Dubois, P. (2007). New developments in biodegradable starch-based nanocomposites. Int. Polym. Process. 22: 463–470, https://doi.org/10.3139/217.2076.Suche in Google Scholar

Rhalmi, O., Lahkale, R., Ben Zarouala, K., Chouni, K., Garmim, T., and Sabbar, E. (2024 In press). Enhanced optical, dielectric, and mechanical properties of starch-based nanocomposite films reinforced with layered double hydroxide. J. Thermoplast. Compos. Mater., https://doi.org/10.1177/08927057241254102.Suche in Google Scholar

Sadeghizadeh-Yazdi, J., Habibi, M., Kamali, A.A., and Banaei, M. (2019). Application of edible and biodegradable starch-based films in food packaging: a systematic review and meta-analysis. Curr. Res. Nutr. Food Sci. 7: 624–637, https://doi.org/10.12944/CRNFSJ.7.3.03.Suche in Google Scholar

Saiah, O., Hachemaoui, A., and Yahiaoui, A. (2017). Synthesis of a conducting nanocomposite by intercalative copolymerisation of furan and aniline in montmorillonite. Int. Polym. Process. 32: 515–518, https://doi.org/10.3139/217.3419.Suche in Google Scholar

Salaberria, A.M., Labidi, J., and Fernandes, S.C.M. (2014). Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chem. Eng. J. 256: 356–364, https://doi.org/10.1016/j.cej.2014.07.009.Suche in Google Scholar

Shih, Y.T. and Zhao, Y. (2021). Development, characterization and validation of starch based biocomposite films reinforced by cellulose nanofiber as edible muffin liner. Food Packag. Shelf Life 28: 100655, https://doi.org/10.1016/j.fpsl.2021.100655.Suche in Google Scholar

Syafri, E., Kasim, A., Abral, H., Sudirman, Sulungbudi, G.T., Sanjay, M.R., and Sari, N.H. (2018). Synthesis and characterization of cellulose nanofibers (CNF) ramie reinforced cassava starch hybrid composites. Int. J. Biol. Macromol. 120: 578–586, https://doi.org/10.1016/j.ijbiomac.2018.08.134.Suche in Google Scholar PubMed

Tian, J., Kong, Y., Qian, S., Zhang, Z., Xia, Y., and Li, Z. (2023). Mechanically robust multifunctional starch films reinforced by surface-tailored nanofibrillated cellulose. Compos. Part B Eng. 275: 111339, https://doi.org/10.1016/j.compositesb.2024.111339.Suche in Google Scholar

Tian, Y., Zhou, M., Luo, T., Zhu, P., Cheng, F., Zhang, Y., and Lin, Y. (2022). A comparative investigation of gelatinized and regenerated starch composites reinforced by microfibrillated cellulose. Food Chem. 373: 131470, https://doi.org/10.1016/j.foodchem.2021.131470.Suche in Google Scholar PubMed

Tian, Y., Zhu, P., Zhou, M., Guo, R., Cheng, F., Lin, Y., and Yang, R. (2019). Microfibrillated cellulose modified with urea and its reinforcement for starch-based bionanocomposites. Cellulose 26: 5981–5993, https://doi.org/10.1007/s10570-019-02505-x.Suche in Google Scholar

Tongdeesoontorn, W., Mauer, L.J., Wongruong, S., Sriburi, P., and Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem. Cent. J. 5: 6, https://doi.org/10.1186/1752-153X-5-6.Suche in Google Scholar PubMed PubMed Central

Vaezi, K., Asadpour, G., and Sharifi, S.H. (2020). Bio nanocomposites based on cationic starch reinforced with montmorillonite and cellulose nanocrystals: fundamental properties and biodegradability study. Int. J. Biol. Macromol. 146: 374–386, https://doi.org/10.1016/j.ijbiomac.2020.01.007.Suche in Google Scholar PubMed

Vishnuvarthanan, M. and Asha Anish, M. (2024). 11 Bio-based materials in advanced packaging applications. In: Prasad, A., Chakraborty, G., and Davim, J.P. (Eds.). Sustainable bio-based composites: biomedical and engineering applications. De Gruyter, Berlin, Boston, pp. 205–232.10.1515/9783111321530-011Suche in Google Scholar

Wu, H., Liu, C., Chen, J., Chang, P.R., Chen, Y., and Anderson, D.P. (2009). Structure and properties of starch/α-zirconium phosphate nanocomposite films. Carbohydr. Polym. 77: 358–364, https://doi.org/10.1016/j.carbpol.2009.01.002.Suche in Google Scholar

Yadav, M., Behera, K., Chang, Y.H., and Chiu, F.C. (2020). Cellulose nanocrystal reinforced chitosan based UV barrier composite films for sustainable packaging. Polymers 12: 202, https://doi.org/10.3390/polym12010202.Suche in Google Scholar PubMed PubMed Central

Yi, T., Qi, M., Mo, Q., Huang, L., Zhao, H., Liu, D., Xu, H., Huang, C., Wang, S., and Liu, Y. (2020). Ecofriendly preparation and characterization of a cassava starch/polybutylene adipate terephthalate film. Processes 8: 329, https://doi.org/10.3390/pr8030329.Suche in Google Scholar

Yontar, A.K., Çevik, S., and Yontar, O. (2023). Green production of plant/collagen-based antibacterial polyvinyl alcohol (PVA) nanocomposite films. Sustain. Chem. Pharm. 33: 101119, https://doi.org/10.1016/j.scp.2023.101119.Suche in Google Scholar

Zhang, S., He, Y., Lin, Z., Li, J., and Jiang, G. (2019). Effects of tartaric acid contents on phase homogeneity, morphology and properties of poly (butyleneadipate-co-terephthalate)/thermoplastic starch bio-composities. Polym. Test. 76: 385–395, https://doi.org/10.1016/j.polymertesting.2019.04.005.Suche in Google Scholar

Ziti, A., Hartiti, B., Labrim, H., Fadili, S., Tchognia Nkuissi, H.J., Ridah, A., Tahri, M., and Thevenin, P. (2019). Effect of copper concentration on physical properties of Cu2ZnSnS4 thin films deposited by dip-coating technique. Appl. Phys. A 125: 218, https://doi.org/10.1007/s00339-019-2513-0.Suche in Google Scholar

Received: 2023-12-13
Accepted: 2024-09-05
Published Online: 2024-10-29
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2023-4479/pdf
Button zum nach oben scrollen