Startseite Naturwissenschaften Fabrication of soybean oil-based polyol modified polyurethane foam from ammonium polyphosphate and its thermal stability and flame retardant properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fabrication of soybean oil-based polyol modified polyurethane foam from ammonium polyphosphate and its thermal stability and flame retardant properties

  • Xu Zhang EMAIL logo , Zhaoqian Wang , Simiao Sun , Dehe Yuan , Yueqi Wen , Zhanpeng Su , Zhi Wang und Hua Xie
Veröffentlicht/Copyright: 8. September 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Rigid polyurethane foams (RPUFs) were prepared using biomass soybean oil-based polyol and ammonium polyphosphate (APP) as raw materials. The effects of APP on the thermal stability and combustion performance of soybean oil-based polyol-modified RPUFs were investigated by thermogravimetric analysis, pyrolysis kinetic analysis, limiting oxygen index (LOI) test, cone calorimetry (CONE), scanning electron microscopy (SEM), and smoke density (Ds). The results showed that the modified RPUF with 20 wt% APP (RPUF-S3-20) had the lowest mass loss, the highest integrated programmed decomposition temperature and the highest activation energy. In addition, RPUF-S3-20 had the lowest Ds (30.9), the highest light transmittance (61.4 %), the lowest heat release rate (602.7 kW/m2, 506.8 MJ/m2, and 847.3 kW/m2) and the total heat release (18.3 MJ/m2, 21.4 MJ/m2, and 31.4 MJ/m2), which showed that RPUF-S3-20 had good thermal stability and flame retardant performance. The current results can provide an effective reference for the preparation of environmentally friendly RPUF by bio-based modification.


Corresponding author: Xu Zhang, Liaoning Key Laboratory of Aircraft Fire Explosion Control and Reliability Airworthiness Technology, Shenyang Aerospace University, Shenyang 110136, China; and School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China, E-mail:

Acknowledgements

The financial support from Scientific Research Fund of Liaoning Provincial Education Department (Grant No. JYT2020011) is greatly acknowledged.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: Scientific Research Fund of Liaoning Provincial Education Department (Grant No. JYT2020011).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

Ciecierska, E., Jurczyk-Kowalska, M., Bazarnik, P., Kowalski, M., Krauze, S., and Lewandowska, M. (2015). The influence of carbon fillers on the thermal properties of polyurethane foam. J. Therm. Anal. Calorim. 123: 283–291, https://doi.org/10.1007/s10973-015-4940-2.Suche in Google Scholar

Chen, M.J., Wang, X., Tao, M.C., Liu, X.Y., Liu, Z.G., Zhang, Y., Zhao, C.S., and Wang, J.S. (2018). Full substitution of petroleum-based polyols by phosphorus-containing soy-based polyols for fabricating highly flame-retardant polyisocyanurate foams. Polym. Degrad. Stab. 154: 312–322, https://doi.org/10.1016/j.polymdegradstab.2018.07.001.Suche in Google Scholar

Coats, A.W. and Redfern, J.P. (1964). Kinetic parameters from the thermogravimetric data. Nature 201: 68–69, https://doi.org/10.1038/201068a0.Suche in Google Scholar

Dhaliwal, G.S., Bajwa, D.S., and Bajwa, S. (2021). Fabrication and testing of soy-based polyurethane foam with flame retardant properties. J. Polym. Environ. 29: 1153–1161, https://doi.org/10.1007/s10924-020-01930-5.Suche in Google Scholar

Feng, F. and Qian, L.J. (2014). The flame-retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams. Polym. Compos. 35: 301–309, https://doi.org/10.1002.pc22662.10.1002/pc.22662Suche in Google Scholar

Gomez, J.C., Zakaria, R., Aung, M.M., Mokhtar, M.N., and Yunus, R.B. (2020). Characterization of novel rigid-foam polyurethanes from residual palm oil and algae oil. J. Mater. Res. Technol. 9: 16303–16316, https://doi.org/10.1016/j.jmrt.2020.11.095.Suche in Google Scholar

Guida, M.Y., Bouaik, H., El, Mouden. L., Moubarik, A., Aboulkas, A., Elharfi, K., and Hannioui, A. (2017). Utilization of starink approach and avrami theory to evaluate the kinetic parameters of the pyrolysis of olive mill solid waste and olive mill wastewater. J. Adv. Chem. Eng. 7: 1–8, https://doi.org/10.4172/2090-4568.1000155.Suche in Google Scholar

Heinen, M., Gerbase, A.E., and Petzhold, C.L. (2014). Vegetable oil-based rigidpolyurethanes and phosphorylated flame-retardants derived from epoxydizedsoybean oil. Polym. Degrad. Stab. 108: 76–86, https://doi.org/10.1016/j.polymdegradstab.2014.05.024.Suche in Google Scholar

Kissinger, H.H.E. (1957). Reaction kinetics in differential thermal analysis. Anal. Chem. 29: 1702–1706, https://doi.org/10.1021/ac60131a045.Suche in Google Scholar

Lee, Y.J., Park, C.K., and Kim, S.H. (2018). Fabrication of castor‐oil/polycaprolactone based bio‐polyurethane foam reinforced with nanocellulose. Polym. Compos. 39: 2004–2011, https://doi.org/10.1002/pc.24160.Suche in Google Scholar

Li, Q.M., Wang, J.Y., Chen, L.M., Shi, H., and Hao, J.W. (2019). Ammonium polyphosphate modified with b-cyclodextrin crosslinking rigid polyurethane foam: enhancing thermal stability and suppressing flame spread. Polym. Degrad. Stab. 161: 166–174, https://doi.org/10.1016/j.polymdegradstab.2019.01.024.Suche in Google Scholar

Liu, X., Salmeia, K.A., Rentsch, D., and Hao, J.W., Gaan, S.(2017). Thermal decomposition and flammability of rigid PU foams containing some DOPO derivatives and other phosphorus compounds. J. Anal. Appl. Pyrol. 124: 219–229, https://doi.org/10.1016/j.jaap.2017.02.003.Suche in Google Scholar

Liu, X., Hao, J.W., and Gaan, S. (2016). Recent studies of decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Adv. 6: 74742–74756, https://doi.org/10.1039/c6ra14345h.Suche in Google Scholar

Mustata, F., Tudorachi, N., and Bicu, L. (2015). The kinetic study and thermal characterization of epoxy resins crosslinked with amino carboxylic acids. J. Anal. Appl. Pyro. 112: 180–191, https://doi.org/10.1016/j.jaap.2015.01.030.Suche in Google Scholar

Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38: 1881–1886, https://doi.org/10.1246/bcsj.38.1881.Suche in Google Scholar

Tang, G., Liu, M.R., Deng, D., Zhao, R.Q., Liu, X.L., Yang, Y.D., Yang, S.J., and Liu, X.Y. (2021). Phosphorus-containing soybean oil-derived polyols forflame-retardant and smoke-suppressant rigid polyurethane foams. Polym. Degrad. Stab. 191: 109701, https://doi.org/10.1016/j.polymdegradstab.2021.109701.Suche in Google Scholar

Wicklein, B., Kocjan, A., Salazar-Alvarez, G., Carosio, F., Camino, G., Antonietti, M., and Bergström, L. (2015). Thermally insulating andfire retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10: 277–283, https://doi.org/10.1038/NNANO.2014.248.Suche in Google Scholar PubMed

Xi, W., Qian, L.J., Chen, Y.J., Wang, J., and Liu, X. (2015). Addition flame-retardant behaviors of expandable graphite and [bis(2-hydroxyethyl) amino]-methyl-phosphonic acid dimethyl ester in rigid polyurethane foams. Polym. Degrad. Stab. 122: 36–43, https://doi.org/10.1016/j.polymdegradstab.2015.10.013.Suche in Google Scholar

Yang, H.Y., Song, L., Hu, Y., and Yuen, R.K.K. (2018). Diphase flame‐retardant effect of ammonium polyphosphate and dimethyl methyl phosphonate on polyisocyanurate‐ polyurethane foam. Polym. Adv. Technol. 29: 2917–2925, https://doi.org/10.1002/pat.4411.Suche in Google Scholar

Zhang, X., Li, S., Wang, Z., Sun, G.H., and Hu, P. (2020a). Thermal stability of flexible polyurethane foams containing modified layered double hydroxides and zinc borate. Int. J. Polym. Anal. Charact. 25: 499–516, https://doi.org/10.1080/1023666X.2020.1812920.Suche in Google Scholar

Zhang, X., Li, S., Wang, Z., and Wang, D.L. (2020b). Study on thermal stability of typical carbon fiber epoxy composites after airworthiness fire protection test. Fire Mater. 44: 202–210, https://doi.org/10.1002/fam.2788.Suche in Google Scholar

Zhou, W., Jia, P.Y., Zhou, Y.H., and Zhang, M. (2018). Preparation and characterization of tung oil-based flame retardant polyols. Chin. J. Chem. Eng. 26: 2664–2671, https://doi.org/10.1016/j.cjche.2018.03.011.Suche in Google Scholar

Received: 2023-05-29
Accepted: 2023-08-14
Published Online: 2023-09-08
Published in Print: 2024-03-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2023-4399/html
Button zum nach oben scrollen