Startseite Vulcanization kinetics and mechanical properties of filled ethylene-vinyl acetate copolymer rubber composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Vulcanization kinetics and mechanical properties of filled ethylene-vinyl acetate copolymer rubber composites

  • Changfa Xiao EMAIL logo , Qingshan Yang , Kefu Shao , Yongjiang Li , Songhan Wan und Xianru He EMAIL logo
Veröffentlicht/Copyright: 26. Mai 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The vulcanization reaction of ethylene vinyl acetate copolymer (EVM) rubber is fast, resulting in poor processing safety. EVM is often filled with flame-retardant fillers as insulating or sheathing material for wires and cables. Herein, the effects of flame-retardant magnesium hydroxide (Mg(OH)2), aluminum hydroxide (Al(OH)3) and of the traditional reinforcing fillers carbon black (CB) and silicon dioxide (SiO2) on the vulcanization kinetics of EVM were investigated. The vulcanization characteristics showed that the scorch time (T10) of the unfilled EVM (KB), SiO2/EVM, Mg(OH)2/EVM, and Al(OH)3/EVM composites was about 1.75 min. T10 of the CB/EVM composite was 2.22 min. Compared with KB, the activation energy (E a ) increased by about 15 kJ/mol for CB/EVM composites and by about 5 kJ/mol for SiO2/EVM, Mg(OH)2/EVM and Al(OH)3/EVM composites. The results indicate that CB delays the vulcanization time of EVM rubber, slows down the rate of vulcanization reaction and improves the safety of vulcanization. The addition of SiO2, Mg(OH)2 and Al(OH)3 has little effect on the vulcanization reaction. The mechanical properties show that CB/EVM is more uniformly vulcanized and has the best mechanical properties with a tensile strength of 17.61 MPa and elongation at break of 404.58 %. Mg(OH)2/EVM and Al(OH)3/EVM samples have prominent vulcanization non-uniformity resulting in poor mechanical properties.


Corresponding authors: Changfa Xiao, Sinopec Chongqing SVW Chemical Co., LTD, Chongqing 401254, China; and Chongqing SVW Technology Co., LTD, Chongqing 401254, China, E-mail: ; and Xianru He, School of New Energy and Materials, Southwest Petroleum University, Chengdu, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Declaration of competing interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Data availability statement: Research date are not shared.

References

Bahattab, M.A., Mosnáček, J., Basfar, A.A., and Shukri, T.M. (2010). Cross-linked poly (ethylene vinyl acetate)(EVA)/low density polyethylene (LDPE)/metal hydroxides composites for wire and cable applications. Polym. Bull. 64: 569–580, https://doi.org/10.1007/s00289-009-0194-0.Suche in Google Scholar

Bahloul, W., Bounor-Legaré, V., Fenouillot, F., and Cassagnau, P. (2009). EVA/PBT nanostructured blends synthesized by in situ polymerization of cyclic cBT (cyclic butylene terephthalate) in molten EVA. Polymer 50: 2527–2534, https://doi.org/10.1016/j.polymer.2009.03.055.Suche in Google Scholar

Cárdenas, M., García-López, D., Gobernado-Mitre, I., Merino, J., Pastor, J., Martínez, J.d.D., Barbeta, J., and Calveras, D. (2008). Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites–Effect of particle size and surface treatment of ATH filler. Polym. Degrad. Stab. 93: 2032–2037, https://doi.org/10.1016/j.polymdegradstab.2008.02.015.Suche in Google Scholar

Carpentier, F., Bourbigot, S., Le Bras, M., Delobel, R., and Foulon, M. (2000). Charring of fire retarded ethylene vinyl acetate copolymer—magnesium hydroxide/zinc borate formulations. Polym. Degrad. Stab. 69: 83–92, https://doi.org/10.1016/s0141-3910(00)00044-6.Suche in Google Scholar

Chen, X., Lee, D.S., Zhu, X., and Yam, K.L. (2012). Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films. J. Agric. Food Chem. 60: 3492–3497, https://doi.org/10.1021/jf2045813.Suche in Google Scholar PubMed

Coran, A. (2003). Chemistry of the vulcanization and protection of elastomers: a review of the achievements. J. Appl. Polym. Sci. 87: 24–30, https://doi.org/10.1002/app.11659.Suche in Google Scholar

Crane, L.W., Dynes, P., and Kaelble, D. (1973). Analysis of curing kinetics in polymer composites. J. Polym. Sci. 11: 533–540, https://doi.org/10.1002/pol.1973.130110808.Suche in Google Scholar

Digges, K., Gann, R.G., Grayson, S.J., Hirschler, M.M., Lyon, R.E., Purser, D.A., Quintiere, J.G., Stephenson, R.R., and Tewarson, A. (2008). Human survivability in motor vehicle fires. Fire Mater. 32: 249–258, https://doi.org/10.1002/fam.964.Suche in Google Scholar

Dinato, R.C., Ribeiro, A.P., Butugan, M.K., Pereira, I.L., Onodera, A.N., and Sacco, I.C. (2015). Biomechanical variables and perception of comfort in running shoes with different cushioning technologies. J. Sci. Med. Sport 18: 93–97, https://doi.org/10.1016/j.jsams.2013.12.003.Suche in Google Scholar PubMed

Fu, M. and Qu, B. (2004). Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends. Polym. Degrad. Stab. 85: 633–639, https://doi.org/10.1016/j.polymdegradstab.2004.03.002.Suche in Google Scholar

García-Muñoz, M.A., Valera-Zaragoza, M., Aparicio-Saguilán, A., Peña-Rico, M.A., Juarez-Arellano, E.A., Aguirre-Cruz, A., Ramírez-Vargas, E., and Sánchez-Valdes, S. (2020). Melt processing of ethylene–vinyl acetate/banana starch/Cloisite 20A organoclay nanocomposite films: structural, thermal and composting behavior. Iran. Polym. J. 29: 723–733, https://doi.org/10.1007/s13726-020-00835-3.Suche in Google Scholar

Guo, Y., Liu, J., Luo, J., Liu, H., and Peng, S. (2023). Enhancement of thermal stability and flame retardancy of ethylene vinyl acetate/magnesium hydroxide composite by carbon black. Fire Mater. 47: 251–261, https://doi.org/10.1002/fam.3093.Suche in Google Scholar

Guo, H., Yue, L., Rui, G., and Manas-Zloczower, I. (2019). Recycling poly (ethylene-vinyl acetate) with improved properties through dynamic cross-linking. Macromolecules 53: 458–464, https://doi.org/10.1021/acs.macromol.9b02281.Suche in Google Scholar

Huang, J., Liang, M., Feng, C., and Liu, H. (2016). Synergistic effects of 4A zeolite on the flame-retardant properties and thermal stability of an efficient halogen-free flame-retardant EVA composite. Polym. Eng. Sci. 56: 380–387, https://doi.org/10.1002/pen.24263.Suche in Google Scholar

Ji, X., Zhang, M., Yin, H., Lyu, Y., Hoch, M., and Shi, X. (2021). Properties and mechanism of EVM–GMA terpolymer elastomer cross-linked by epoxy–anhydride reaction. Polym. Bull. 78: 769–794, https://doi.org/10.1007/s00289-020-03133-3.Suche in Google Scholar

Jia, L., Fu, G., and Shi, X. (2015). Foaming and damping properties of ethylene vinyl-acetate copolymer/polylactic acid blends. J. Macromol. Sci. Part B-Phys. 54: 190–202, https://doi.org/10.1080/00222348.2014.998556.Suche in Google Scholar

Jiao, L.-L., Zhao, P.C., Liu, Z.Q., Wu, Q.S., Yan, D.Q., Li, Y.L., Chen, Y.N., and Li, J.S. (2022). Preparation of magnesium hydroxide flame retardant from hydromagnesite and enhance the flame retardant performance of EVA. Polymers 14: 1567, https://doi.org/10.3390/polym14081567.Suche in Google Scholar PubMed PubMed Central

Kissinger, H.E. (1957). Reaction kinetics in differential thermal analysis. Anal. Chem. 29: 1702–1706, https://doi.org/10.1021/ac60131a045.Suche in Google Scholar

Lai, S.M. and You, P.Y. (2018). Preparation and characterization of ethylene vinyl-acetate copolymer/silicone blends with excellent two-way shape memory properties. Macromol. Res. 26: 984–997, https://doi.org/10.1007/s13233-018-6134-9.Suche in Google Scholar

Li, Z. and Qu, B. (2004). Effects of gamma irradiation on the properties of flame-retardant EVM/magnesium hydroxide blends. Radiat. Phys. Chem. 69: 137–141, https://doi.org/10.1016/s0969-806x(03)00446-8.Suche in Google Scholar

Liu, H., Xiong, Y., Xu, W., Zhang, Y., and Pan, S. (2012). Synthesis of a novel intumescent flame retardant and its application in EVM. J. Appl. Polym. Sci. 125: 1544–1551, https://doi.org/10.1002/app.34924.Suche in Google Scholar

Ozawa, T. (1975). Critical investigation of methods for kinetic analysis of thermoanalytical data. J. Therm. Anal. 7: 601–617, https://doi.org/10.1007/BF01912021.Suche in Google Scholar

Qi, X., Dong, Y., Islam, M.Z., Zhu, Y., Fu, Y., and Fu, S.Y. (2021). Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber. Compos. Sci. Technol. 203: 108609, https://doi.org/10.1016/j.compscitech.2020.108609.Suche in Google Scholar

Sun, L., Lu, X., Bai, Q., and Wang, Z. (2022). Triple-shape memory materials based on cross-linked ethylene-acrylic acid copolymer and ethylene-vinyl acetate copolymer. Polym. Eng. Sci. 62: 2692–2703, https://doi.org/10.1002/pen.26052.Suche in Google Scholar

Tan, Y., Wachtendorf, V., Klack, P., Kukofka, T., Ruder, J., and Schartel, B. (2020). Durability of the flame retardance of ethylene-vinyl acetate copolymer cables: comparing different flame retardants exposed to different weathering conditions. J. Appl. Polym. Sci. 137: 47548, https://doi.org/10.1002/app.47548.Suche in Google Scholar

Wang, B., Qian, X., Shi, Y., Yu, B., Hong, N., Song, L., and Hu, Y. (2015). Cyclodextrin microencapsulated ammonium polyphosphate: preparation and its performance on the thermal, flame retardancy and mechanical properties of ethylene vinyl acetate copolymer. Compos. Pt. B-Eng. 69: 22–30, https://doi.org/10.1016/j.compositesb.2014.09.015.Suche in Google Scholar

Wang, C., Zhang, Y., and Wang, Z. (2017). Mechanical properties, morphology, and Mullins effect of thermoplastic vulcanizates based on ethylene–vinyl acetate copolymer/ethylene–vinyl acetate rubber. J. Thermoplast. Compos. Mater. 30: 827–839, https://doi.org/10.1177/0892705715614062.Suche in Google Scholar

Wang, L., Jiang, J., Jiang, P., and Yu, J. (2010). Synthesis, characteristic of a novel flame retardant containing phosphorus, silicon and its application in ethylene vinyl-acetate copolymer (EVM) rubber. J. Polym. Res. 17: 891–902, https://doi.org/10.1007/s10965-009-9381-9.Suche in Google Scholar

Wang, L., Wang, G., and Jiang, P. (2011a). Research on the related properties of EVM/Al (OH) 3/SiO2 composites applied for halogen-free flame retardant cable insulation and jacket. J. Appl. Polym. Sci. 120: 368–378, https://doi.org/10.1002/app.33149.Suche in Google Scholar

Wang, L., Wu, X., Wu, C., Yu, J., Wang, G., and Jiang, P. (2011b). Study on the flame retardancy of EVM/magnesium hydroxide composites optimized with a flame retardant containing phosphorus and silicon. J. Appl. Polym. Sci. 121: 68–77, https://doi.org/10.1002/app.33226.Suche in Google Scholar

Wang, S., Liang, S., Wang, K., Liu, J., Luo, J., and Peng, S. (2023). Enhanced flame retardancy, smoke suppression, and acid resistance of polypropylene/magnesium hydroxide composite by expandable graphite and microencapsulated red phosphorus. J. Vinyl Addit. Technol., https://doi.org/10.1002/vnl.21994.Suche in Google Scholar

Yan, H.Q., Chen, S., and Qi, G.R. (2003). Synthesis, cure kinetics and thermal properties of the 2, 7-dihydroxynaphthalene dicyanate. Polymer 44: 7861–7867, https://doi.org/10.1016/j.polymer.2003.10.042.Suche in Google Scholar

Yu, H., Zhang, Y., and Ren, W. (2009). Toughening effect of ethylene-vinyl acetate rubber on nylon 1010 compatibilized by maleated ethylene-vinyl acetate copolymers. J. Polym. Sci. Pt. B-Polym. Phys. 47: 434–444, https://doi.org/10.1002/polb.21648.Suche in Google Scholar

Zanetti, M. and Costa, L. (2004). Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polymer 45: 4367–4373, https://doi.org/10.1016/j.polymer.2004.04.043.Suche in Google Scholar

Zhang, Q., Wang, G., Wen, X., Hoch, M., Mao, J., and Shi, X. (2022). Moisture crosslinking and properties of ethylene-vinyl acetate rubber. Polymer 259: 125362, https://doi.org/10.1016/j.polymer.2022.125362.Suche in Google Scholar

Zhang, Z.X., Wang, W.Y., Yang, J.H., Zhang, N., Huang, T., and Wang, Y. (2016). Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J. Phys. Chem. C 120: 22793–22802, https://doi.org/10.1021/acs.jpcc.6b06345.Suche in Google Scholar

Zia-ul-Haq, M., Haq, Z.U., Wu, J., Peng, Z., and Zhang, Y. (2023). Mechanical properties, thermal stability, and thermal degradation kinetics of silicone rubber/ethylene-vinyl acetate copolymer/magnesium sulfate whisker composites compatibilized by ethylene-acrylic acid copolymer. J. Appl. Polym. Sci. 140: e53404, https://doi.org/10.1002/app.53404.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ipp-2023-4365).


Received: 2023-03-07
Accepted: 2023-05-02
Published Online: 2023-05-26
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 31.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2023-4365/pdf
Button zum nach oben scrollen