Startseite Technik Theoretical and numerical analysis of a prey–predator model (3-species) in the frame of generalized Mittag-Leffler law
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Theoretical and numerical analysis of a prey–predator model (3-species) in the frame of generalized Mittag-Leffler law

  • Mohammed A. Almalahi , Mohammed S. Abdo , Thabet Abdeljawad EMAIL logo und Ebenezer Bonyah
Veröffentlicht/Copyright: 3. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present paper, a new fractional order predator–prey model is considered. The applied fractional operator is a generalized Atangana–Baleanu–Caputo (ABC) derivative, which does not require any restrictions on the initial conditions as in the case of classical ABC fractional derivatives. On the theoretical aspect, we prove the existence, uniqueness, and Ulam–Hyers stability results by using some fixed point theorems and nonlinear analysis techniques. The numerical aspect discusses the approximation solutions for the proposed model by applying the generalized scheme of the Adams–Bashforth technique. At the end, we explain the behavior of the solution to the studied model through graphical representations and numerical simulations.

2010 MSC Classification: 34A08; 34A12; 47H10

Corresponding author: Thabet Abdeljawad, Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia; and Department of Medical Research, China Medical University, Taichung 40402, Taiwan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] V. Volterra, Théorie mathématique de la lutte pour la vie, Paris, Gauthier-Villars, 1931.Suche in Google Scholar

[2] A. J. Lotka, Elements of Physical Biology, Baltimore, Williams & Wilkins, 1925.Suche in Google Scholar

[3] A. N. Kolmogoro, “Sulla theoria di Volterra della lotta per l’esistenza,” G. Ist. Ital. Attuari, vol. 7, pp. 74–80, 1936.Suche in Google Scholar

[4] V. A. Kostitzin, Mathematical Biology, Bromley, Harrap, 1939.Suche in Google Scholar

[5] M. Smith, Models in Ecology, Cambridge, Cambridge University Press, 1974.Suche in Google Scholar

[6] J. Murray, Mathematical Biology, Berlin, Springer, 1989.10.1007/978-3-662-08539-4Suche in Google Scholar

[7] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, New York, Marcel Dekker, 1980.Suche in Google Scholar

[8] G. Seo and D. L. De Angelis, “A predator-prey model with a Holling type I functional response including a predator mutual interference,” J. Nonlinear Sci., vol. 21, pp. 811–833, 2011. https://doi.org/10.1007/s00332-011-9101-6.Suche in Google Scholar

[9] A. P. Gutierrez, Applied Population Ecology: A Supply-Demand Approach, New York, NY, USA, John Wiley and Sons, 1996.Suche in Google Scholar

[10] G. Seo and M. Kot, “A comparison of two predator-prey models with Holling’s type I functional response,” Math. Biosci., vol. 212, pp. 161–179, 2008. https://doi.org/10.1016/j.mbs.2008.01.007.Suche in Google Scholar PubMed

[11] H. W. Hethcote, W. Wang, L. Han, and Z. Ma, “A predator–prey model with infected prey,” Theor. Popul. Biol., vol. 66, no. 3, pp. 259–268, 2004. https://doi.org/10.1016/j.tpb.2004.06.010.Suche in Google Scholar PubMed

[12] M. Tansky, “Switching effect in prey-predator systems,” J. Theor. Biol., vol. 70, pp. 263–271, 1978.10.1016/0022-5193(78)90376-4Suche in Google Scholar PubMed

[13] N. D. Kazarinoffa and P. Driessche, “A model predator-prey system with functional response,” Math. Biosci., vol. 39, pp. 125–134, 1978. https://doi.org/10.1016/0025-5564(78)90031-7.Suche in Google Scholar

[14] G. W. Harrison, “Global stability of predator-prey interactions,” J. Math. Biol., vol. 8, pp. 159–171, 1979. https://doi.org/10.1007/bf00279719.Suche in Google Scholar

[15] K. S. Cheng, S. B. Hsu, and S. S. Lin, “Some results on global stability of a predator-prey system, ” J. Math. Biol., vol. 12, pp. 115–126, 1981.10.1007/BF00275207Suche in Google Scholar

[16] L. P. Liou and K. S. Cheng, “Global stability of a predator-prey system,” J. Math. Biol., vol. 25, pp. 65–71, 1988. https://doi.org/10.1007/bf00280173.Suche in Google Scholar

[17] F. Brouer and Soudack, “Constant rate stocking of predator-prey systems,” J. Math. Biol., vol. 11, pp. 1–14, 1981.10.1007/BF00275820Suche in Google Scholar

[18] S. B. Hsu, “Predator-mediated coexistence and extinction,” Math. Biosci., vol. 54, pp. 231–248, 1981. https://doi.org/10.1016/0025-5564(81)90088-2.Suche in Google Scholar

[19] B. Dubey, “Modelling the depletion and conservation of resources: effects of two interacting populations,” Ecol. Model., vol. 101, pp. 123–136, 1997. https://doi.org/10.1016/s0304-3800(97)01974-1.Suche in Google Scholar

[20] B. Dubey and R. K. Upadhyay, “Persistence and Extinction of one -prey and two Predators system,” Nonlinear Anal. Model Control, vol. 9, no. 4, pp. 307–329, 2004. https://doi.org/10.15388/na.2004.9.4.15147.Suche in Google Scholar

[21] V. Rai and R. K. Upadhyay, “Chaotic population dynamics and biology of the top predator,” Chaos, Solit. Fractals, vol. 21, no. 5, pp. 1195–1204, 2004.10.1016/j.chaos.2003.12.065Suche in Google Scholar

[22] V. Rai, M. Anand, and R. K. Upadhyay, “Trophic structure and dynamical complexity in simple ecological models,” Ecol. Complex., vol. 4, no. 4, pp. 212–222, 2007. https://doi.org/10.1016/j.ecocom.2007.06.010.Suche in Google Scholar

[23] R. K. Upadhyay and R. K. Naji, “Dynamics of a three species food chain model with Crowley–Martin type functional response,” Chaos, Solit. Fractals, vol. 42, no. 3, pp. 1337–1346, 2009.10.1016/j.chaos.2009.03.020Suche in Google Scholar

[24] M. F. Elettreby, “Two-prey one predator model,” Chaos, Solit. Fractals, vol. 39, pp. 2018–2027, 2009. https://doi.org/10.1016/j.chaos.2007.06.058.Suche in Google Scholar

[25] F. Chen and L. Chen, “Qualitative analysis of a predator-prey model with Holling type-II functional response incorporating a constant prey refuge,” Nonlin. Anal. RWA, vol. 11, no. 1, pp. 246–252, 2010. https://doi.org/10.1016/j.nonrwa.2008.10.056.Suche in Google Scholar

[26] Z. Zhang and Z. Huo, “Existence of four positive periodic solutions for a ratio-dependent predator-prey system with multiple exploited (or harvesting) terms,” Nonlin. Anal. RWA, vol. 11, no. 3, pp. 1560–1571, 2010. https://doi.org/10.1016/j.nonrwa.2009.03.001.Suche in Google Scholar

[27] S. Das and P. K. Gupta, “A mathematical model on fractional Lotka–Volterra equations,” J. Theor. Biol., vol. 277, no. 1, pp. 1–6, 2011. https://doi.org/10.1016/j.jtbi.2011.01.034.Suche in Google Scholar PubMed

[28] S. He, K. Sun, and S. Banerjee, “Dynamical properties and complexity in fractional-order diffusionless Lorenz system,” Eur. Phys. J. Plus, vol. 131, no. 8, pp. 1–12, 2016. https://doi.org/10.1140/epjp/i2016-16254-8.Suche in Google Scholar

[29] C. Ionescu, A. Lopes, D. Copot, J. T. Machado, and J. H. T. Bates, “The role of fractional calculus in modeling biological phenomena: a review,” Commun. Nonlinear Sci. Numer. Simulat., vol. 51, pp. 141–159, 2017. https://doi.org/10.1016/j.cnsns.2017.04.001.Suche in Google Scholar

[30] Z. Wang, Y. Xie, J. Lu, and Y. Li, “Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition,” Appl. Math. Comput., vol. 347, pp. 360–369, 2019. https://doi.org/10.1016/j.amc.2018.11.016.Suche in Google Scholar

[31] K. A. Abro and A. Atangana, “A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal–fractional differentiations,” Eur. Phys. J. Plus, vol. 135, no. 2, p. 226, 2020. https://doi.org/10.1140/epjp/s13360-020-00136-x.Suche in Google Scholar

[32] M. S. Abdo, S. K. Panchal, K. Shah, and T. Abdeljawad, “Existence theory and numerical analysis of three species prey–predator model under Mittag-Leffler power law,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–16, 2020.10.1186/s13662-020-02709-7Suche in Google Scholar PubMed PubMed Central

[33] M. A. Abdulwasaa, M. S. Abdo, K. Shah, T. A. Nofal, S. K. Panchal, S. V. Kawale, and A. H. Abdel-Aty, “Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India,” Results Phys., vol. 20, p. 103702, 2021. https://doi.org/10.1016/j.rinp.2020.103702.Suche in Google Scholar PubMed PubMed Central

[34] S. T. Thabet, M. S. Abdo, K. Shah, and T. Abdeljawad, “Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative,” Results Phys., vol. 19, p. 103507, 2020. https://doi.org/10.1016/j.rinp.2020.103507.Suche in Google Scholar PubMed PubMed Central

[35] M. A. Almalahi, S. K. Panchal, W. Shatanawi, M. S. Abdo, K. Shah, and K. Abodayeh, “Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator,” Results Phys., vol. 24, p. 104045, 2021. https://doi.org/10.1016/j.rinp.2021.104045.Suche in Google Scholar

[36] M. A. Khan and A. Atangana, “Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative,” Alex. Eng. J., vol. 59, no. 4, pp. 2379–2389, 2020. https://doi.org/10.1016/j.aej.2020.02.033.Suche in Google Scholar

[37] A. Atangana, “Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination?” Chaos, Solit. Fractals, vol. 136, p. 109860, 2020. https://doi.org/10.1016/j.chaos.2020.109860.Suche in Google Scholar PubMed PubMed Central

[38] S. Qureshi and A. Atangana, “Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data,” Chaos, Solit. Fractals, vol. 136, p. 109812, 2020. https://doi.org/10.1016/j.chaos.2020.109812.Suche in Google Scholar

[39] A. A. Kilbas, H. M. Shrivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier, 2006.Suche in Google Scholar

[40] I. Podlubny, Fractional Differential Equations, San Diego, Academic Press, 1999.Suche in Google Scholar

[41] M. Caputo and M. Fabrizio, “A new definition of fractional derivative without singular kernel,” Prog. Fract. Differ. Appl., vol. 1, no. 2, pp. 73–85, 2015.Suche in Google Scholar

[42] A. Atangana and D. Baleanu, “New fractional derivative with non-local and non-singular kernel,” Therm. Sci., vol. 20, no. 2, pp. 757–763, 2016.10.2298/TSCI160111018ASuche in Google Scholar

[43] T. Abdeljawad, “Fractional operators with generalized Mittag-Leffler kernels and their differintegrals,” Chaos, vol. 29, p. 023102, 2019. https://doi.org/10.1063/1.5085726.Suche in Google Scholar PubMed

[44] C. Dai and M. Zhao, “Mathematical and dynamic analysis of a prey–predator model in the presence of alternative prey with impulsive state feedback control,” Discrete Dynam Nat. Soc., vol. 2012, p. 724014, 2012. https://doi.org/10.1155/2012/724014.Suche in Google Scholar

[45] T. Abdeljawad and D. Baleanu, “On fractional derivatives with generalized Mittag-Leffler kernels,” Adv. Differ. Eqs., vol. 2018, p. 468, 2018. https://doi.org/10.1186/s13662-018-1914-2.Suche in Google Scholar

[46] Y. Zhou, Basic Theory of Fractional Differential Equations, Singapore, World Scientific, 2014.10.1142/9069Suche in Google Scholar

[47] S. M. Ulam, Problems in Modern Mathematics, New York, Wiley, 1940.Suche in Google Scholar

[48] S. M. Ulam, A Collection of Mathematical Problems, New York, Interscience, 1968.Suche in Google Scholar

[49] M. Toufik and A. Atangana, “New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models,” Eur. Phys. J. Plus, vol. 132, p. 444, 2017. https://doi.org/10.1140/epjp/i2017-11717-0.Suche in Google Scholar

Received: 2021-07-16
Accepted: 2022-09-18
Published Online: 2022-10-03

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Article
  3. Hybrid solitary wave solutions of the Camassa–Holm equation
  4. Numerical simulations of wave propagation in a stochastic partial differential equation model for tumor–immune interactions
  5. A Chebyshev collocation method for solving the non-linear variable-order fractional Bagley–Torvik differential equation
  6. Higher order codimension bifurcations in a discrete-time toxic-phytoplankton–zooplankton model with Allee effect
  7. Numerical modeling of the dam-break flood over natural rivers on movable beds
  8. A class of piecewise fractional functional differential equations with impulsive
  9. Lie symmetry analysis for two-phase flow with mass transfer
  10. Asymptotic behavior for stochastic plate equations with memory in unbounded domains
  11. Discussion on controllability of non-densely defined Hilfer fractional neutral differential equations with finite delay
  12. A linearized finite difference scheme for time–space fractional nonlinear diffusion-wave equations with initial singularity
  13. Ground state solutions of Schrödinger system with fractional p-Laplacian
  14. Bifurcation analysis of a new stochastic traffic flow model
  15. An uncertainty measure based on Pearson correlation as well as a multiscale generalized Shannon-based entropy with financial market applications
  16. Hilfer fractional stochastic evolution equations on infinite interval
  17. Iterative learning control for conformable stochastic impulsive differential systems with randomly varying trial lengths
  18. Chebyshev wavelet-Picard technique for solving fractional nonlinear differential equations
  19. Theoretical assessment of the impact of awareness programs on cholera transmission dynamic
  20. Theoretical and numerical analysis of a prey–predator model (3-species) in the frame of generalized Mittag-Leffler law
  21. Controllability discussion for fractional stochastic Volterra–Fredholm integro-differential systems of order 1 < r < 2
  22. Shehu transform on time-fractional Schrödinger equations – an analytical approach
  23. A (2 + 1)-dimensional variable-coefficients extension of the Date–Jimbo–Kashiwara–Miwa equation: Lie symmetry analysis, optimal system and exact solutions
  24. Mathematical model of fluid flow in a double constricted tapered tube with permeable boundary
Heruntergeladen am 8.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0288/pdf
Button zum nach oben scrollen