Startseite Numerical Solution of Fractional Sine-Gordon Equation Using Spectral Method and Homogenization
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical Solution of Fractional Sine-Gordon Equation Using Spectral Method and Homogenization

  • Maryam Hasanpour , Mahmoud Behroozifar EMAIL logo und Nazanin Tafakhori
Veröffentlicht/Copyright: 20. August 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a new method for the numerical solution of fractional sine-Gordon (SG) equation is presented. Our method consists of two steps, in first step: the main equation is converted to a homogeneous one using interpolation. In second step: two-dimensional approximation of functions by shifted Jacobi polynomials is used to reduce the problem into a system of nonlinear algebraic equations. The archived system is solved by Newton’s iterative method. Our method is stated in general case on rectangular [a,b] × [0,T] which is based upon Jacobi polynomial by parameters (α,β). Several test problems are employed and results of numerical experiments are presented and also compared with analytical solutions. Also, we verify the numerical stability of the method, by applying a disturbance in the problem. The obtained results confirm the acceptable accuracy and stability of the presented method.

JEL Classification: 97N50; 26A33; 35R11; 35B27

References

[1] A. G. Popov and E. V. Maevskii, Analytical approaches to the study of the sine-Gordon equation and pseudospherical surfaces. J. Math. Sci. 142(5) (2007), 2377–2418.10.1007/s10958-007-0183-5Suche in Google Scholar

[2] R. Rajaraman, Solitons and instantons: an introduction to solitons and instantons in quantum field theory, Elsevier, Amsterdam, 1987.Suche in Google Scholar

[3] T. A. Kurura, O. Okoya and O. Ongati, Finite difference solution of (2+ 1)-dimensional sine-Gordon equation: a model for investigating the effects of varying surface damping parameter on Josephson current flowing through the long Josephson junction, Int. J. Sci. Res. 5(12) (2016), 1249–1255.Suche in Google Scholar

[4] M. Remoissenet, Waves called solitons. Concepts and Experiments, Springer, Berlin, 2003.Suche in Google Scholar

[5] A. C. Scott, Propagation of magnetic flux on a long Josephson tunnel junction. Il Nuovo Cimento B 69(2) (1970), 241–261.10.1007/BF02710988Suche in Google Scholar

[6] R. Hirota, Exact three-soliton solution of the two-dimensional sine-Gordon equation. J. Phys. Soc. Jpn. 35(5) (1973), 1566–1566.10.1143/JPSJ.35.1566Suche in Google Scholar

[7] A. M. Wazwaz, The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations. Appl. Math. Comput. 167(2) (2005), 1196–1210.10.1016/j.amc.2004.08.005Suche in Google Scholar

[8] S. Liu, Z. Fu and S. Liu, Exact solutions to sine-Gordon-type equations. Phys. Lett. A 351 (2006), 59–63.10.1016/j.physleta.2005.10.054Suche in Google Scholar

[9] G. L. Lamb Jr., Elements of soliton theory, Wiley-Interscience, New York, 1980.Suche in Google Scholar

[10] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, New York, 2009.10.1007/978-3-642-00251-9Suche in Google Scholar

[11] C. Zheng, Numerical solution to the sine-Gordon equation defined on the whole real axis. SIAM J. Sci. Comput. 29(6) (2007), 2494–2506.10.1137/050640643Suche in Google Scholar

[12] D. Kaya, A numerical solution of the sine-Gordon equation using the modified decomposition method. Appl. Math. Comput. 143(2) (2003), 309–317.10.1016/S0096-3003(02)00363-6Suche in Google Scholar

[13] S. Abbasbandy, Numerical solution of nonlinear Klein Gordon equations by variational iteration method. Int. J. Numer. Method Eng. 70(7) (2007), 876–881.10.1002/nme.1924Suche in Google Scholar

[14] B. Batiha, M. S. M. Noorani and I. Hashim, Numerical solution of sine-Gordon equation by variational iteration method. Phys. Lett. A 370(5) (2007), 437–440.10.1016/j.physleta.2007.05.087Suche in Google Scholar

[15] J. Biazar and F. Mohammadi, Application of differential transform method to the sine-Gordon equation. Int. J. Nonlinear Sci. 10(2) (2010), 190–195.Suche in Google Scholar

[16] J. Rashidinia and R. Mohammadi, Tension spline solution of nonlinear sine-Gordon equation. Numer. Algorithms 56(1) (2011), 129–142.10.1007/s11075-010-9377-xSuche in Google Scholar

[17] H. S. Shukla and M. Tamsir, Numerical solution of nonlinear sine-Gordon equation by using the modified cubic B-spline differential quadrature method. Beni-Suef Univ. J. Basic Appl. Sci., 2016 (accepted for publication).10.1063/1.4906256Suche in Google Scholar

[18] M. T. Darvishi, F. Khani, S. Hamedi-Nezhad and S. W. Ryu, 2010. New modification of the HPM for numerical solutions of the sine-Gordon and coupled sine-Gordon equations. Int. J. Comput. Math. 87(4), 908–919.10.1080/00207160802247596Suche in Google Scholar

[19] T. R. Rao, Numerical solution of sine-gordon equations through reduced differential transform method. Global J. Pure Appl. Math. 13(7) (2017), 3879–3888.Suche in Google Scholar

[20] M. Dehghan and A. Shokri, A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79(3) (2008), 700–715.10.1016/j.matcom.2008.04.018Suche in Google Scholar

[21] K. Djidjeli, W. G. Price and E. H. Twizell, Numerical solutions of a damped sine-Gordon equation in two space variables. J. Eng. Math. 29(4) (1995), 347–369.10.1007/BF00042761Suche in Google Scholar

[22] F. Yin, T. Tian, J. Song and M. Zhu, Spectral methods using Legendre wavelets for nonlinear Klein Sine-Gordon equations. J. Comput. Appl. Math. 275 (2015), 321–334.10.1016/j.cam.2014.07.014Suche in Google Scholar

[23] E. Keshavarz, Y. Ordokhani and M. Razzaghi, A numerical solution for fractional optimal control problems via Bernoulli polynomials. J. Vib. Control 22(18) (2016), 3889—3903.10.1177/1077546314567181Suche in Google Scholar

[24] Z. Liu, S. Lü and F. Liu, Fully discrete spectral methods for solving time fractional nonlinear Sine-Gordon equation with smooth and non-smooth solutions. Appl. Math. Comput. 333 (2018), 213—224.10.1016/j.amc.2018.03.069Suche in Google Scholar

[25] M. Dehghan, M. Abbaszadeh and A. Mohebbi, An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein Gordon equations. Eng. Anal. Boundary Elem. 50 (2015), 412–434.10.1016/j.enganabound.2014.09.008Suche in Google Scholar

[26] K. Oldham and J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, vol. 111, Elsevier, Dover Publications, New York, 1974.Suche in Google Scholar

[27] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.Suche in Google Scholar

[28] E. H. Doha, A. H. Bhrawy and S. S. Ezz-Eldien, A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36(10) (2012), 4931–4943.10.1016/j.apm.2011.12.031Suche in Google Scholar

[29] E. Kreyszig, Introductory functional analysis with applications, Wiley, New York, 1989.Suche in Google Scholar

[30] M. Behroozifar and A. Sazmand, An approximate solution based on Jacobi polynomials for time-fractional convection diffusion equation. Appl. Math. Comput. 296 (2017), 1–17.10.1016/j.amc.2016.09.028Suche in Google Scholar

[31] E. H. Doha, A. H. Bhrawy and R. M. Hafez, On shifted Jacobi spectral method for high-order multi-point boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 17(10) (2012), 3802–3810.10.1016/j.cnsns.2012.02.027Suche in Google Scholar

Received: 2018-11-08
Accepted: 2019-07-22
Published Online: 2019-08-20
Published in Print: 2019-11-18

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2018-0339/html
Button zum nach oben scrollen