Startseite Technik Microcontroller Control/Synchronization of the Dynamics of Van der Pol Oscillators Submitted to Disturbances
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microcontroller Control/Synchronization of the Dynamics of Van der Pol Oscillators Submitted to Disturbances

  • R. Thepi Siewe , U. Simo Domguia und P. Woafo EMAIL logo
Veröffentlicht/Copyright: 22. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this article, we present a microcontroller implementation of the synchronization of two Van der Pol oscillators submitted to disturbances of the pulse-like type. Three coupling schemes are used: the classical linear proportional coupling, a power order coupling and an adaptive coupling. After obtaining the coupling coefficients for synchronization through numerical simulation, the microcontroller implementation is carried out using simulation based on Euler algorithm. Agreement is found between both simulation strategies.

PACS: 05.45.Xt

References

[1] X. Han, J. A. Lü and X. Wu, Adaptive feedback synchronization of Lü system, Chaos Solit. Fract. 22(1) (2004), 221–227.10.1016/j.chaos.2003.12.103Suche in Google Scholar

[2] E. W. Chimi Kontchou, H. B. Fotsin and P. Woafo, Feedback control and adaptive synchronization of chaotic forced Bonhoeffer–Van der Pol oscillators, Phys. Scr. 77 (2008), 045–001.10.1088/0031-8949/77/04/045001Suche in Google Scholar

[3] P. R. Nwagoum Tuwa and P. Woafo, Analysis of an electrostatically actuated micro-plate subject to proportional-derivative controllers, J. Vib. Control. 1–10 (2016). doi:10.1177/1077546316674609Suche in Google Scholar

[4] L. M. Pecora and T. L. Carroll, Synchronization in Chaotic systems, Phys. Rev. Lett. 64(8) (1990), 821–824.10.1103/PhysRevLett.64.821Suche in Google Scholar PubMed

[5] T. L. Carroll and L. M. Pecora, Synchronizing chaotic circuits, IEEE Trans. Circuits Syst. 38(4) (1991), 453–456.10.1109/31.75404Suche in Google Scholar

[6] T. Kapitaniak, Synchronization of chaos using continuous control, Phys. Rev. E 50(2) (1994), 1642–1644.10.1103/PhysRevE.50.1642Suche in Google Scholar PubMed

[7] P. Woafo and R. A. Kraenkel, Synchronization: Stability and duration time, Phys. Rev. E 65 (2002), 036–225.10.1103/PhysRevE.65.036225Suche in Google Scholar PubMed

[8] A. Chudzik, P. Perlikowski, A. Stefanski and T. Kapitaniak, Multistability and rare attractors in Van der Pol-duffing oscillator, Int. J. Bifurcat. Chaos. 21 (2011), 1907–1912.10.1142/S0218127411029513Suche in Google Scholar

[9] J. Sawicki, M. Abel and E. Schöll, Synchronization in coupled organ pipes, Cyber Phys. 4 (2015), 112–115.Suche in Google Scholar

[10] B. Nana and P. Woafo, Synchronization of diffusively coupled oscillators: Theory and experiment, AJEEE 3(2) (2015), 37–43.Suche in Google Scholar

[11] A. P. Fournaris and N. Sklavos, Secure embedded system hardware design – a flexible security and trust enhanced approach, Comput. Elect. Eng. 40 (2014), 121–133.10.1016/j.compeleceng.2013.11.011Suche in Google Scholar

[12] A. A. Elbaset, A. Hamdi, M. Abd-El Sattar and M. Khaled, Impleme ntation of a modif ied perturb and observe maximum power point tracking algorithm for photovoltaic system using an embedded microcont-roller, IET Renew Power Gen 10 (2016),551–560.10.1049/iet-rpg.2015.0309Suche in Google Scholar

[13] M. A. Murillo-Escobar, C. Cruz-Hernández, F. Abundiz-Pérez and R. M. López-Gutiérrez, Implementation of an improved chaotic encryption algorithm for real-time embedded systems by using a 32-bit microcontroller, Microprocess. Microsyst. 45 (2016), 297–309.10.1016/j.micpro.2016.06.004Suche in Google Scholar

[14] S. Kaçar, Analog circuit and microcontroller based RNG application of a new easy realizable 4D chaotic system, Opti-Int. J. Light. Opt. (2016). doi:10.1016/j.ijleo.2016.07.044Suche in Google Scholar

[15] J. Chandramohan, R. Nagarajan, K. Satheeshkumar, N. Ajithkumar, P. A. Gopinath and S. Ranjithkumar, Intelligent smart home automation and security system using Arduino and Wi-fi, Int. J. Eng. And Comp. Sci. 6 (2017), 20694–20698.Suche in Google Scholar

[16] Y. Raghavender Rao, Automatic smart parking system using Internet of Things (IOT), Int. J. Eng. Tech. Sci. Res. 4 (2017), 2394–3386.10.21090/IJAERD.24384Suche in Google Scholar

[17] R. Chiu, M. Mora-Gonzalez and D. Lopez-Mancilla, Implementation of a Chaotic oscillator into a simple microcontroller, Conf. Electron. Eng. Comput. Science, IERI Procedia. 4 (2013), 247–252.10.1016/j.ieri.2013.11.035Suche in Google Scholar

[18] M. Z. De la Hoz, L. Acho and Y. Vidal, An experimental realization of a chaos-based secure communication using arduino microcontrollers, Scientif. World J. 10 (2015). doi:10.1155/2015/123080Suche in Google Scholar PubMed PubMed Central

[19] H. Hamiche, S. Guermah, R. Saddaoui, K. Hannoun, M. Laghrouche and S. Djennoune, Analysis and implementation of a novel robust transmission scheme for private digital communications using Arduino Uno board, Nonlinear Dyn. 81 (2015), 1921–1932.10.1007/s11071-015-2116-zSuche in Google Scholar

[20] A. S. Andreatos and C. K. Volos, Secure text encryption based on hardware chaotic noise generator, 2nd International Conference on Cryptography and Its Applications in the Armed Forces (2014).Suche in Google Scholar

[21] M. A. Murillo-Escobar, C. Cruz-Hernández, F. F. Abundiz-Pérez and R. M. López-Gutiérrez, A robust embedded biometric authentication system based on fingerprint and chaotic encryption, Expert Syst. Appl. 42 (2015), 8198–8211.10.1016/j.eswa.2015.06.035Suche in Google Scholar

Received: 2017-1-27
Accepted: 2017-6-8
Published Online: 2017-11-22
Published in Print: 2018-4-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2017-0025/pdf
Button zum nach oben scrollen