Startseite Two-Phase Flow of Fluid-Particle Interaction over a Stretching Sheet in the Presence of Magnetic Field
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Two-Phase Flow of Fluid-Particle Interaction over a Stretching Sheet in the Presence of Magnetic Field

  • J. Hasnain EMAIL logo , Z. Abbas und M. Sajid
Veröffentlicht/Copyright: 16. Juli 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This article presents a theoretical study of magnetohydrodynamic boundary layer flow of a dusty viscoelastic fluid over a porous stretching sheet. The basic steady equations of the viscoelastic second grade fluid and dust phases are in the form of partial differential equations. A set of coupled nonlinear ordinary differential equations is obtained by using suitable similarity transformations. The approximate first order solutions of the resulting equations are obtained using the perturbation technique. The results are also verified with the well-known finite difference technique known as Keller box method. The physical insight of the involved parameters on the velocity of both fluid and dust phases and the skin-friction coefficient is shown through graphs and tables and discussed in detail. The study shows that an increased effective viscosity increases the velocity of both fluid and particle phase.

Nomenclature

Vvelocity field for fluid phaseHdimensionless dust phase density
Vpvelocity field for dust phasevwsuction velocity
x,yspatial coordinatesKsecond grade parameter
u,vvelocity vector components for fluid in x and y directions, respectivelyMmagnetic parameter
up,vpvelocity vector components for dust in x and y directions, respectivelyRsuction parameter
Jcurrent densityGreek letters
Bmagnetic fieldα1,α2material constants
Nnumber density of dust particleτCauchy stress tensor
k=6πaμStokes constantμdynamic viscosity
aspherical radius of the dust particleρdensity of fluid
mmass of dust particleυkinematic viscosity
ppressureσelectrical conductivity
Iidentity tensorβfluid-particle interaction parameter
f,fdimensionless velocity components for fluid phaseαconstant
F,Gdimensionless velocity components for dust phaseηdimensionless quantity

Acknowledgements

We are thankful to the anonymous reviewer for his/her suggestions to improve the version of paper.

References

[1] K. R. Rajagopal, On boundary conditions for fluids of the differential type, in: A. Sequeira (ed.), Navier Stokes equations and related non-linear problems, pp. 273–278, Plenum Press, New York, 1995.10.1007/978-1-4899-1415-6_22Suche in Google Scholar

[2] K. R. Rajagopal and P. N. Kaloni, Some remarks on boundary conditions for fluids of the differential type, in: G. A. C. Graham and S. K. Malik (eds.), Continuum mechanics and its applications, pp. 935–942, Hemisphere, New York, 1989.Suche in Google Scholar

[3] M. Sajid, I. Ahmad, T. Hayat and M. Ayub, Unsteady flow and heat transfer of a second grade fluid over a stretching sheet, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 96–108.10.1016/j.cnsns.2007.07.014Suche in Google Scholar

[4] M. Turkyilmazoglu, The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface, Int. J. Mech. Sci. 77 (2013), 263–268.10.1016/j.ijmecsci.2013.10.011Suche in Google Scholar

[5] R. Cortell, MHD (magneto-hydrodynamic) flow and radiative nonlinear heat transfer of a viscoelastic fluid over a stretching sheet with heat generation/absorption, Energy. 74 (2014), 896–905.10.1016/j.energy.2014.07.069Suche in Google Scholar

[6] T. E. Akinbobola and S. S. Okoya, The flow of second grade fluid over a stretching sheet with variable thermal conductivity and viscosity in the presence of heat source/sink, J. Niger. Mathe. Soc. 34 (2015), 331–342.10.1016/j.jnnms.2015.10.002Suche in Google Scholar

[7] N. S. Khan, S. Uslam, T. Gul, I. Khan and W. Khan, Thin film flow of a second grade fluid in a porous medium past a stretching sheet with heat transfer, Alexandria Eng. J. 57 (2018), 1019–1031.10.1016/j.aej.2017.01.036Suche in Google Scholar

[8] M. Rafiq, M. Kamran, N. Ahmed, S. T. Mohyud-Din, Y. Bashir, S. A. Haider, S. Farwa and M. Tahir, Analytical solution for the flow of second grade fluid over a stretching sheet, AIP. Adv. 9 (2019), 055313.10.1063/1.5093158Suche in Google Scholar

[9] S. S. Mosta, T. Hayat and O. M. Aldossary, MHD flow of upper-convected Maxwell fluid over porous stretching sheet using successive Taylor series linearization method, Appl. Math. Mech. Engl. Ed. 33 (2012), 975–990.10.1007/s10483-012-1599-xSuche in Google Scholar

[10] T. Hayat, M. Imtiaz, A. Alsaedi and R. Mansoor, MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions, Chin. Phys. B. 23(5) (2014), 054701(1–8).10.1088/1674-1056/23/5/054701Suche in Google Scholar

[11] A. S. Zaman, A. S. Abd Aziz and Z. Md Ali, Double slip effects of Magnetohydrodynamic (MHD) boundary layer flow over an exponentially stretching sheet with radiation, heat source and chemical reaction, IOP. Conf. Ser. J. Phys. Conf. Ser. 890 (2017), 012020. doi:10.1088/1742-6596/890/1/012020.Suche in Google Scholar

[12] F. Mabood and S. Shateyl, Multiple slip effects on MHD unsteady flow heat and mass transfer impinging on permeable stretching sheet with radiation, Modell. Simul. Eng. 2019 (2019), 3052790 1–11. doi:10.1155/2019/3052790.Suche in Google Scholar

[13] I. M. Alarifi, A. G. Abokhalil, M. Osman, L. A. Lund, M. B. Ayed, H. Hafedh Belmabrouk and I. Tlili, MHD flow and heat transfer over vertical stretching sheet with heat sink or source effect, Symmetry. 11 (2019), 297 1–14. doi:10.3390/sym11030297.Suche in Google Scholar

[14] P. G. Saffman, On the stability of laminar flow of a dusty gas, J. Fluid. Mech. 13 (1962), 120–128.10.1017/S0022112062000555Suche in Google Scholar

[15] K. Vajravelu and J. Nayfeh, Hydromagnetic flow of a dusty fluid over a stretching surface, Int. J. Non Linear Mech. 27 (1992), 937–945.10.1016/0020-7462(92)90046-ASuche in Google Scholar

[16] S. Manjunatha, B. J. Gireesha and C. S. Bagewadi, Effect of thermal radiation on boundary layer flow and heat transfer of dusty fluid over an unsteady stretching sheet, Int. J. Eng. Sci. Technol. 4 (2012), 36–48.10.4314/ijest.v4i4.5Suche in Google Scholar

[17] B. J. Gireesha, B. Mahanthesh, R. S. R. Gorla and K. L. Krupalakshmi, Mixed convection two-phase flow of Maxwell fluid under the influence of non-linear thermal radiation, non-uniform heat source/sink and fluid-particle suspension, Ains Shams Eng. J. 9(4) (2018), 735–746.10.1016/j.asej.2016.04.020Suche in Google Scholar

[18] M. Jalil, S. Asghar and S. Yasmeen, An exact solution of MHD boundary layer flow of dusty fluid over a stretching surface, Math. Prob. Eng. 2017 (2017), 2307469 1–5. doi:10.1155/2017/2307469.Suche in Google Scholar

[19] M. Turkyilmazoglua, Magnetohydrodynamic two-phase dusty fluid flow and heat model over deforming isothermal surfaces, Phys. Fluids. 29 (2017), 013302.10.1063/1.4965926Suche in Google Scholar

[20] Z. Abbas, J. Hasnain and M. Sajid, Effects of slip on MHD flow of a dusty fluid over a stretching sheet through porous space, J. Eng. Thermo. Phys. 28 (2019), 84–102.10.1134/S1810232819010077Suche in Google Scholar

Received: 2016-08-05
Accepted: 2019-06-25
Published Online: 2019-07-16
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2016-0110/html
Button zum nach oben scrollen