Startseite Ultrasound’s influence on the properties of cellulose/Halloysite clay nanotube nanocomposites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ultrasound’s influence on the properties of cellulose/Halloysite clay nanotube nanocomposites

  • Behrooz Sedighi , Abolfazl Davodiroknabadi ORCID logo EMAIL logo , Mohammad Shahvaziyan und Mohammadali Shirgholami
Veröffentlicht/Copyright: 13. Januar 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study investigated the characteristics of a nano-web made using the electrospinning technique, which incorporated Halloysite clay nanotubes. The focus was on understanding how different ultrasonic frequencies affected the properties of the nano-web. Through the use of field emission scanning electron microscopy and elemental mapping, it was confirmed that the Halloysite clay nanotubes were present and provided insights into the morphology of the samples. The electrical conductivity results were impressive, and the treated specimens showed higher crease recovery properties compared to the untreated ones, thanks to the presence of Halloysite clay nanotubes and the various ultrasound frequencies used. In addition, the samples demonstrated improved ultraviolet-blocking abilities as well as excellent strength and resistance to abrasion. Overall, the nanocomposite webs displayed promising features that could find applications in multiple industries.


Corresponding author: Abolfazl Davodiroknabadi, Department of Design and Clothing, Yazd Branch, Islamic Azad University, Yazd, Iran, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: BS designed this study, AD supervised the experimental work, MS revised the manuscript and MS worked in lab. The author read and approved the final manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All authors declare that they have no conflicts of interest.

  6. Research funding: This work was supported by Islamic Azad University-Yazd Branch (Award No.: 1403-01).

  7. Data availability: Data available on request from the authors.

References

1. Mirjalili, M.; Zohoori, S. Review for Application of Electrospinning and Electrospun Nanofibers Technology in Textile Industry. J. Nanostruct. Chem. 2016, 6 (3), 207–213. https://doi.org/10.1007/s40097-016-0189-y.Suche in Google Scholar

2. Zohoori, S.; Latifi, M.; Davodiroknabadi, A.; Mirjalili, M. Vibration Electrospinning of Polyamide-66/Multiwall Carbon Nanotube Nanocomposite: Introducing Electrically Conductive, Ultraviolet Blocking and Antibacterial Properties. Pol. J. Chem. Technol. 2017, 19 (3), 56–60. https://doi.org10/.1515/pjct-2017-0049.10.1515/pjct-2017-0049Suche in Google Scholar

3. Lebedev, A. S.; Suzdal’tsev, A. V.; Anfilogov, V. N.; Farlenkov, A. S.; Porotnikova, N. M.; Vovkotrub, E. G.; Akashev, L. A. Carbothermal Synthesis, Properties, and Structure of Ultrafine SiC Fibers. Inorg. Mater. 2020, 56 (1), 20–27. https://doi.org/10.1134/s0020168520010094.Suche in Google Scholar

4. Suvorova, Y. V.; Alekseeva, S. I.; Fronya, M. A.; Viktorova, I. V. Investigations of Physical and Mechanical Properties of Polymeric Nanocomposites (Review). Inorg. Mater. 2013, 49 (15), 1357–1368. https://doi.org/10.1134/s0020168513150089.Suche in Google Scholar

5. Al-Attabi, A.; Abdulhadi, M. A.; Al-Ameer, L. R.; Hussein, M. D. N.; Abdulameer, S. J.; Zabibah, R. S.; Fadhil, A. A. Potential of Multifunctional Electrospun Nanofibers in Cancer Management. Int. J. Mater. Res. 2024, 115 (3), 162–178. https://doi.org/10.1515/ijmr-2023-0125.Suche in Google Scholar

6. Ghiasi, Y.; Davodiroknabadi, A.; Zohoori, S. Electrospinning of Wheat Bran cellulose/TiO2/ZnO Nanofibre and Investigating the UV Blocking and Bactericidal Properties. Bull. Mater. Sci. 2021, 44 (2), 89–95. https://doi.org/10.1007/s12034-021-02406-5.Suche in Google Scholar

7. Zohoori, S.; Shahsavari, S.; Sabzali, M.; Hosseini, S. A.; Talebikatieklahijany, R.; Morshedzadeh, Z. Reinforcing of Viscose Fabric Using Nano Web of Palm-Cellulose Carbon Mesoporous Nanoparticle Composite. J. Nat. Fibers 2022, 19 (14), 8937–8945. https://doi.org/10.1080/15440478.2021.1975600.Suche in Google Scholar

8. Asakereh, M.; Zohoori, S.; Mohammadisaghand, F.; Sabzali, M.; Mohammadisaghand, R.; Soltani, B. Extracting Hazelnut Green Shell Cellulose and Electrospinning Nanofibers Doped with Gelatin/Nano Silver. J. Nat. Fibers 2022, 19 (17), 15552–15562. https://doi.org/10.1080/15440478.2022.2131024.Suche in Google Scholar

9. Alghamdi, M. M.; El-Zahhar, A. A. Cellulose Acetate Butyrate Graphene Oxide Nanocomposite Membrane: Fabrication, Characterization and Performance. Chem. Ind. Chem. Eng. Q. 2021, 27 (1), 35–44. https://doi.org/10.2298/ciceq200128022a.Suche in Google Scholar

10. Krithika, S. M. U.; Mani, K.; Thangavelu, S. K.; Bharathi, C. M.; Saravanan, K.; Prakash, C. Investigation of the Physical Properties and Acoustic Performance of Composites Developed from Natural Fibres. AATCC J. Res. 2022, 9 (4), 213–220. https://doi.org/10.1177/24723444221103675.Suche in Google Scholar

11. Il’in, E. G.; Parshakov, A. S.; Kottsov, S. Y.; Razumov, M. I.; Gryzlov, D. Y. Preparation of Nanoporous Carbon from a Spherical NbC/C Nanocomposite and Its Properties. Inorg. Mater. 2022, 58 (11), 1130–1136. https://doi.org/10.1134/s002016852211005x.Suche in Google Scholar

12. Şimşek, V.; Çağlayan, M. O. Nanocrystalline PbS Thin Film Produced by Alkaline Chemical Bath Deposition: Effect of Inhibitor Levels and Temperature on the Physicochemical Properties. Int. J. Mater. Res. 2023, 114 (12), 1047–1057. https://doi.org/10.1515/ijmr-2022-0491.Suche in Google Scholar

13. Momeni, A.; Ghadi, A.; Fazaeli, R.; Khavarpour, M. Synthesis, Characterization, and Optimization of a Quaternary Nanocomposite for Efficient Electromagnetic Absorption Coating in the X-Band. Int. J. Mater. Res. 2023, 114 (9), 753–764. https://doi.org/10.1515/ijmr-2021-8516.Suche in Google Scholar

14. Pavliňáková, V.; Fohlerová, Z.; Pavliňák, D.; Khunová, V.; Vojtová, L. Effect of Halloysite Nanotube Structure on Physical, Chemical, Structural and Biological Properties of Elastic Polycaprolactone/Gelatin Nanofibers for Wound Healing Applications. Mater. Sci. Eng. C. 2018, 91, 94–102. https://doi.org/10.1016/j.msec.2018.05.033.Suche in Google Scholar PubMed

15. Movahedi, M.; Karbasi, S. A Core-Shell Electrospun Scaffold of Polyhydroxybutyrate-Starch/Halloysite Nanotubes Containing Extracellular Matrix and Chitosan for Articular Cartilage Tissue Engineering Application. J. Polym. Environ. 2023, 31 (7), 3052–3069. https://doi.org/10.1007/s10924-023-02800-6.Suche in Google Scholar

16. Zhang, Y.; Meng, R.; Zhou, J.; Liu, X.; Guo, W. Halloysite Nanotubes-Decorated Electrospun Biobased Polyamide Scaffolds for Tissue Engineering Applications. Colloids Surf., A 2022, 648, 129378–129384. https://doi.org/10.1016/j.colsurfa.2022.129378.Suche in Google Scholar

17. Joseph Gbadeyan, O.; Mohan, T. P.; Kanny, K. Effect of Loading Nano-Clay on Banana Fibers Infused Epoxy Composite Wear Rate Thermal Property and Water Absorption Properties. Mater. Today: Proc. 2023, 87, 252–256. https://doi.org/10.1016/j.matpr.2023.05.352.Suche in Google Scholar

18. Wong, L. W.; Tan, J. B. L. Halloysite Nanotube-Polymer Nanocomposites: A Review on Fabrication and Biomedical Applications. J. Manuf. Process. 2024, 118, 76–88. https://doi.org/10.1016/j.jmapro.2024.03.043.Suche in Google Scholar

19. Zubkiewicz, A.; Szymczyk, A.; Franciszczak, P.; Kochmanska, A.; Janowska, I.; Paszkiewicz, S. Comparing Multi-Walled Carbon Nanotubes and Halloysite Nanotubes as Reinforcements in EVA Nanocomposites. Materials 2020, 13 (17), 3809–4382. https://doi.org/10.3390/ma13173809.Suche in Google Scholar PubMed PubMed Central

20. Wong, L. W.; Pasbakhsh, P.; Arabi, A. M.; Keeling, J.; Tan, J. B. L. Halloysite Nanotubes from Various Geological Deposits: New Insights to Acid Etching and Their Impacts on Products’ Characteristics. J. Environ. Chem. Eng. 2021, 9 (5), 106235–106241. https://doi.org/10.1016/j.jece.2021.106235.Suche in Google Scholar

21. Aghajani-Memar, S.; Mohammadkazemi, F.; Kermanian, H.; Hamedi, S. Synergistic Effect of Bacterial Cellulose and Halloysite Nanotubes on the Properties of the Sodium Caseinate-Based Nanobiocomposites. Appl. Clay Sci. 2022, 222, 106493–106499. https://doi.org/10.1016/j.clay.2022.106493.Suche in Google Scholar

22. Franciszczak, P.; Taraghi, I.; Paszkiewicz, S.; Burzyński, M.; Meljon, A.; Piesowicz, E. Effect of Halloysite Nanotube on Mechanical Properties, Thermal Stability and Morphology of Polypropylene and Polypropylene/Short Kenaf Fibers Hybrid Biocomposites. Materials 2020, 13 (19), 4459–4468. https://doi.org/10.3390/ma13194459.Suche in Google Scholar PubMed PubMed Central

23. Lisuzzo, L.; Cavallaro, G.; Milioto, S.; Lazzara, G. Effects of Halloysite Content on the Thermo-Mechanical Performances of Composite Bioplastics. Appl. Clay Sci. 2020, 185, 105416–105422. https://doi.org/10.1016/j.clay.2019.105416.Suche in Google Scholar

24. Zohoori, S.; Dolatshahi, M.; Pourahmadi, M.; Hajisafari, M. An Inverter-Based, CMOS, Low-Power Optical Receiver Front-End. Fiber Integr. Opt. 2019, 38 (1), 1–20. https://doi.org/10.1080/01468030.2019.1567871.Suche in Google Scholar

25. Soltanisarvestani, R.; Zohoori, S.; Soltanisarvestani, A. A RGC-Based, Low-Power, CMOS Transimpedance Amplifier for 10Gb/s Optical Receivers. Int. J. Electron. 2020, 107 (3), 444–460. https://doi.org/10.1080/00207217.2019.1661027.Suche in Google Scholar

26. Rong, R.; Xu, X.; Zhu, S.; Li, B.; Wang, X.; Tang, K. Facile Preparation of Homogeneous and Length Controllable Halloysite Nanotubes by Ultrasonic Scission and Uniform Viscosity Centrifugation. Chem. Eng. J. 2016, 291, 20–29. https://doi.org/10.1016/j.cej.2016.01.082.Suche in Google Scholar

27. Pongsuk, P.; Pumchusak, J. Effect of Ultrasonication on the Morphology, Mechanical Property, Ionic Conductivity, and Flame Retardancy of PEO-LiCF3SO3-Halloysite Nanotube Composites for Use as Solid Polymer Electrolyte. Polymers 2022, 14 (18), 3710–3721. https://doi.org/10.3390/polym14183710.Suche in Google Scholar PubMed PubMed Central

Received: 2024-04-02
Accepted: 2024-08-06
Published Online: 2025-01-13
Published in Print: 2025-01-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0110/pdf
Button zum nach oben scrollen