Abstract
This work reports green synthesis of AgNPs using aqueous extract of Pupalia lappacea (L.) Juss. The synthesized AgNPs were characterized using UV–visible spectroscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy supported with energy dispersive X-ray, and transmission electron microscopy. UV–vis spectroscopy reveals a characteristic surface plasmon resonance absorption band at 420 nm. TEM results showed synthesis of spherical shaped AgNPs with an average particle size of 14.48 nm. The synthesized AgNPs exhibited excellent inhibition zones against Gram-positive bacteria Staphylococcus aureus (26.33 ± 0.88 mm), Bacillus Coagulans (12.33 ± 0.33 mm); and Gram-negative bacteria Sphingomonas (24.33 ± 0.67 mm), Shigella dysenteriae (24.33 ± 0.67 mm) and Salmonella typhimurium (12.67 ± 0.33 mm). Therefore, Pupalia lappacea mediated AgNPs can be used for clinical and medical applications.
Acknowledgments
Authors would like to acknowledge Andhra University, India and Ministry of Education, Ethiopia.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Tura Safawo Jarso: designed the manuscript, bench work, analyzed and interpreted, Mebrahtu Hagos Kahsay: Bench work, analyzed, interpreted, and edited, Solomon Balami: Interpreted and edited, BV Sandeep: guided, edited, analysed and interpreted, KPJ Hemalatha: guided, edited, analysed and interpreted.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Li, X.; Xu, H.; Chen, Z.-S.; Chen, G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011, 2011, 1–16. https://doi.org/10.1155/2011/270974.Search in Google Scholar
2. Mohanpuria, P.; Rana, N. K.; Yadav, S. K. Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res. 2008, 10 (3), 507–517. https://doi.org/10.1007/s11051-007-9275-x.Search in Google Scholar
3. Mustapha, T.; Misni, N.; Ithnin, N. R.; Daskum, A. M.; Unyah, N. Z. A Review on Plants and Microorganisms Mediated Synthesis of Silver Nanoparticles, Role of Plants Metabolites and Applications. Int. J. Environ. Res. Public Health 2022, 19 (2). https://doi.org/10.3390/ijerph19020674.Search in Google Scholar PubMed PubMed Central
4. Sunkar, S.; Nachiyar, C. V. Biogenesis of Antibacterial Silver Nanoparticles Using the Endophytic Bacterium Bacillus Cereus Isolated from Garcinia Xanthochymus. Asian Pac. J. Trop. Biomed. 2012, 2 (12), 953–959. https://doi.org/10.1016/S2221-1691(13)60006-4.Search in Google Scholar PubMed PubMed Central
5. Chaudhari, R. K.; Shah, P. A.; Shrivastav, P. S. Green Synthesis of Silver Nanoparticles Using Adhatoda Vasica Leaf Extract and its Application in Photocatalytic Degradation of Dyes. Discover Nano 2023, 18 (1), 135. https://doi.org/10.1186/s11671-023-03914-5.Search in Google Scholar PubMed PubMed Central
6. Aliannezhadi, M.; Mirsanaee, S. Z.; Jamali, M.; Shariatmadar Tehrani, F. The Physical Properties and Photocatalytic Activities of Green Synthesized ZnO Nanostructures Using Different Ginger Extract Concentrations. Sci. Rep. 2024, 14 (1), 2035. https://doi.org/10.1038/s41598-024-52455-z.Search in Google Scholar PubMed PubMed Central
7. Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta Nat. 2014, 6 (1), 35–44. https://doi.org/10.32607/20758251-2014-6-1-35-44.Search in Google Scholar
8. Ajazuddin; Saraf, S. Applications of Novel Drug Delivery System for Herbal Formulations. Fitoterapia 2010, 81 (7), 680–689. https://doi.org/10.1016/j.fitote.2010.05.001.Search in Google Scholar PubMed
9. Mainardes, R. M.; Urban, M. C. C.; Cinto, P. O.; Chaud, M. V.; Evangelista, R. C.; Gremião, M. P. D. Liposomes and Micro/nanoparticles as Colloidal Carriers for Nasal Drug Delivery. Curr. Drug Delivery 2006, 3 (3), 275–285. https://doi.org/10.2174/156720106777731019.Search in Google Scholar PubMed
10. Bonifácio, B. V.; da Silva, P. B.; Ramos, M. A. D. S.; Negri, K. M. S.; Bauab, T. M.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems and Herbal Medicines: A Review. Int. J. Nanomed. 2014, 9, 1–15. https://doi.org/10.2147/IJN.S52634.Search in Google Scholar PubMed PubMed Central
11. Klaus-Joerger, T.; Joerger, R.; Olsson, E.; Granqvist, C. Bacteria as Workers in the Living Factory: Metal-Accumulating Bacteria and Their Potential for Materials Science. Trends Biotechnol. 2001, 19 (1), 15–20. https://doi.org/10.1016/s0167-7799(00)01514-6.Search in Google Scholar PubMed
12. Sastry, M.; Ahmad, A.; Khan, M. I.; Kumar, R. Biosynthesis of Metal Nanoparticles Using Fungi and Actinomycete. Curr. Sci. 2003, 85 (2), 162–170.Search in Google Scholar
13. Srikar, S. K.; Giri, D. D.; Pal, D. B.; Mishra, P. K.; Upadhyay, S. N. Green Synthesis of Silver Nanoparticles: A Review. Green Sustainable Chem. 2016, 06 (01), 34–56. https://doi.org/10.4236/gsc.2016.61004.Search in Google Scholar
14. Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638. https://doi.org/10.1039/C1GC15386B.Search in Google Scholar
15. Padma, R. P.; Ramachandra Reddy, P. A Note on Folklore Treatment of Bone Fracture from Ranga Reddy District, Andhra Pradesh. Ethnobotany 1999, 11 (1/2), 107–108.Search in Google Scholar
16. Reddy, C. S.; Reddy, K. N.; Murthy, E. N.; Raju, V. S. Traditional Medicinal Plants in Seshachalam Hills, Andhra Pradesh, India. J. Med. Plants Res. 2009, 3 (5), 408–412.Search in Google Scholar
17. Ndjonka, D.; Agyare, K. C.; Luersen, K.; Hensel, A.; Liebau, E. In Vitro Anti-leishmanial Activity of Traditional Medicinal Plants from Cameroon and Ghana. Int. J. Pharmacol. 2010, 6, 863–871; https://doi.org/10.3923/ijp.2010.863.871.Search in Google Scholar
18. Bero, J.; Ganfon, H.; Jonville, M.-C.; Frédérich, M.; Gbaguidi, F.; DeMol, P.; Moudachirou, M.; Quetin-Leclercq, J. In Vitro Antiplasmodial Activity of Plants Used in Benin in Traditional Medicine to Treat Malaria. J. Ethnopharmacol. 2009, 122 (3), 439–444. https://doi.org/10.1016/j.jep.2009.02.004.Search in Google Scholar PubMed
19. Tamil, S. A.; Siva, S. N.; Ramadevi, M.; Sree Giri, P. B.; Santhosh, K. M. Bioactive Compound Identification, Phytochemical Estimation, In-vitro Anti-inflammatory and Antioxidant Activity of Pupalia Lappacea. Int. J. Pharmacogn.: Int. J. Pharm. Sci. Res. 2014, 1 (9), 596–604. https://doi.org/10.13040/ijpsr.0975-8232.ijp.1.Search in Google Scholar
20. Niraimathi, K. L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of Silver Nanoparticles Using Alternanthera Sessilis (Linn.) Extract and Their Antimicrobial, Antioxidant Activities. Colloids Surf., B 2013, 102, 288–291. https://doi.org/10.1016/j.colsurfb.2012.08.041.Search in Google Scholar PubMed
21. Sathishkumar, P.; Vennila, K.; Jayakumar, R.; Yusoff, A. R. M.; Hadibarata, T.; Palvannan, T. Phyto-Synthesis of Silver Nanoparticles Using Alternanthera Tenella Leaf Extract: An Effective Inhibitor for the Migration of Human Breast Adenocarcinoma (MCF-7) Cells. Bioprocess Biosyst. Eng. 2016, 39 (4), 651–659. https://doi.org/10.1007/s00449-016-1546-4.Search in Google Scholar PubMed
22. Dipankar, C.; Murugan, S. The Green Synthesis, Characterization and Evaluation of the Biological Activities of Silver Nanoparticles Synthesized from Iresine Herbstii Leaf Aqueous Extracts. Colloids Surf., B 2012, 98, 112–119. https://doi.org/10.1016/j.colsurfb.2012.04.006.Search in Google Scholar PubMed
23. Kudle, K. R.; Donda, M. R.; Prashanthi, Y.; Merugu, R.; Pratap Rudra, M. P. Synthesis of Silver Nanoparticles Using the Medicinal Plant Allmania Nadiflora and Evaluation of its Anti Microbial Activities. Int. J. Life Sci. Pharma Res. 2013, 4 (4), 504–511.10.7897/2230-8407.04644Search in Google Scholar
24. Sigamoney, M.; Shaik, S.; Govender, P.; Krishna, S. B. N.; Sershen African Leafy Vegetables as Bio-Factories for Silver Nanoparticles: A Case Study on Amaranthus Dubius C Mart. Ex Thell. S. Afr. J. Bot. 2016, 103, 230–240. https://doi.org/10.1016/j.sajb.2015.08.022.Search in Google Scholar
25. Phanjom, P.; Ahmed, G. Effect of Different Physicochemical Conditions on the Synthesis of Silver Nanoparticles Using Fungal Cell Filtrate ofAspergillus Oryzae(MTCC No. 1846) and Their Antibacterial Effect. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2017, 8 (4), 045016. https://doi.org/10.1088/2043-6254/aa92bc.Search in Google Scholar
26. Kora, A. J.; Sashidhar, R. B.; Arunachalam, J. Gum Kondagogu (Cochlospermum Gossypium): A Template for the Green Synthesis and Stabilization of Silver Nanoparticles with Antibacterial Application. Carbohydr. Polym. 2010, 82 (3), 670–679. https://doi.org/10.1016/j.carbpol.2010.05.034.Search in Google Scholar
27. Sarsar, V.; Selwal, M. K.; Selwal, K. K. Significant Parameter in the Optimization of Biosynthesis of Silver Nanoparticles Using Psidium Guajava Leaf Extract and Evaluation of Their Antimicrobial Activity against Human Pathogenic Bacteria. Int. J. Adv. Pharm. Sci. 2014, 5, 1769–1775.Search in Google Scholar
28. Christopher, J. G.; Saswati, B.; Ezilrani, P. Optimization of Parameters for Biosynthesis of Silver Nanoparticles Using Leaf Extract of Aegle Marmelos. Braz. Arch. Biol. Technol. 2015, 58 (5), 702–710. https://doi.org/10.1590/S1516-89132015050106.Search in Google Scholar
29. Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. T. Optimization for Rapid Synthesis of Silver Nanoparticles and its Effect on Phytopathogenic Fungi. Spectrochim. Acta, Part A 2012, 93, 95–99. https://doi.org/10.1016/j.saa.2012.03.002.Search in Google Scholar PubMed
30. Veerasamy, R.; Xin, T. Z.; Gunasagaran, S.; Xiang, T. F. W.; Yang, E. F. C.; Jeyakumar, N.; Dhanaraj, S. A. Biosynthesis of Silver Nanoparticles Using Mangosteen Leaf Extract and Evaluation of Their Antimicrobial Activities. J. Saudi Chem. Soc. 2011, 15 (2), 113–120. https://doi.org/10.1016/j.jscs.2010.06.004.Search in Google Scholar
31. Verma, A.; Tyagi, S.; Verma, A.; Singh, J.; Joshi, P. Optimization of Different Reaction Conditions for the Bio-Inspired Synthesis of Silver Nanoparticles Using Aqueous Extract of Solanum Nigrum Leaves. J. Nanomater. Mol. Nanotechnol. 2017, 06 (02). https://doi.org/10.4172/2324-8777.1000214.Search in Google Scholar
32. Verma, A.; Mehata, M. S. Controllable Synthesis of Silver Nanoparticles Using Neem Leaves and Their Antimicrobial Activity. J. Radiat. Res. Appl. Sci. 2016, 9 (1), 109–115. https://doi.org/10.1016/j.jrras.2015.11.001.Search in Google Scholar
33. Ibrahim, H. M. M. Green Synthesis and Characterization of Silver Nanoparticles Using Banana Peel Extract and Their Antimicrobial Activity against Representative Microorganisms. J. Radiat. Res. Appl. Sci. 2015, 8 (3), 265–275. https://doi.org/10.1016/j.jrras.2015.01.007.Search in Google Scholar
34. Christensen, L.; Vivekanandhan, S.; Misra, M.; Mohanty, A. K. Biosynthesis of Silver Nanoparticles Using Murraya Koenigii (Curry Leaf): An Investigation on the Effect of Broth Concentration in Reduction Mechanism and Particle Size. Adv. Mater. Lett. 2011, 2 (3), 163–167. https://doi.org/10.5185/amlett.2011.4256.Search in Google Scholar
35. Bhainsa, K. C.; D’Souza, S. F. Extracellular Biosynthesis of Silver Nanoparticles Using the Fungus Aspergillus Fumigatus. Colloids Surf., B 2006, 47 (2), 160–164. https://doi.org/10.1016/j.colsurfb.2005.11.026.Search in Google Scholar PubMed
36. Kim, J. H.; Min, B. R.; Won, J.; Kang, Y. S. Effect of the Polymer Matrix on the Formation of Silver Nanoparticles in Polymer–Silver Salt Complex Membranes. J. Polym. Sci., Part B: Polym. Phys. 2006, 44 (8), 1168–1178. https://doi.org/10.1002/polb.20777.Search in Google Scholar
37. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107 (3), 668–677. https://doi.org/10.1021/jp026731y.Search in Google Scholar
38. Stepanov, A. L. Optical Properties of Metal Nanoparticles Synthesized in a Polymer by Ion Implantation: A Review. Tech. Phys. 2004, 49 (2), 143–153. https://doi.org/10.1134/1.1648948.Search in Google Scholar
39. Shameli, K.; Ahmad, M. B.; Jazayeri, S. D.; Shabanzadeh, P.; Sangpour, P.; Jahangirian, H.; Gharayebi, Y. Investigation of Antibacterial Properties Silver Nanoparticles Prepared via Green Method. Chem. Cent. J. 2012, 6 (1), 73. https://doi.org/10.1186/1752-153X-6-73.Search in Google Scholar PubMed PubMed Central
40. Sastry, M.; Mayya, K. S.; Bandyopadhyay, K. p. H. Dependent Changes in the Optical Properties of Carboxylic Acid Derivatized Silver Colloidal Particles. Colloids Surf., A 1997, 127 (1–3), 221–228. https://doi.org/10.1016/s0927-7757(97)00087-3.Search in Google Scholar
41. Khan, M.; Khan, M.; Adil, S. F.; Tahir, M. N.; Tremel, W.; Alkhathlan, H. Z.; Al-Warthan, A.; Siddiqui, M. R. H. Green Synthesis of Silver Nanoparticles Mediated by Pulicaria Glutinosa Extract. Int. J. Nanomed. 2013, 8, 1507–1516. https://doi.org/10.2147/IJN.S43309.Search in Google Scholar PubMed PubMed Central
42. Dubey, M.; Bhadauria, S.; Kushwah, B. S. Green Synthesis of Nanosilver Particles from Extract of Eucalyptus Hybrida (Safeda) Leaf. Dig. J. Nanomater. Biostruct. 2009, 4, 537–543.Search in Google Scholar
43. Sheny, D. S.; Mathew, J.; Philip, D. Phytosynthesis of Au, Ag and Au-Ag Bimetallic Nanoparticles Using Aqueous Extract and Dried Leaf of Anacardium Occidentale. Spectrochim. Acta, Part A 2011, 79 (1), 254–262. https://doi.org/10.1016/j.saa.2011.02.051.Search in Google Scholar PubMed
44. Lambert, J. B. Introduction To Organic Spectroscopy; Macmillan College, New York 1987.Search in Google Scholar
45. Sanghi, R.; Verma, P. Biomimetic Synthesis and Characterisation of Protein Capped Silver Nanoparticles. Bioresour. Technol. 2009, 100 (1), 501–504. https://doi.org/10.1016/j.biortech.2008.05.048.Search in Google Scholar PubMed
46. Chaturvedula, V. S. P.; Mubarak, C.; Prakash, I. IR Spectral Analysis of Diterpene Glycosides Isolated from Stevia Rebaudiana. Food Nutr. Sci. 2012, 03 (10), 1467–1471. https://doi.org/10.4236/fns.2012.310191.Search in Google Scholar
47. Hajji, M.; Kouraichi, C.; Guerfel, T. Modelling, Structural, Thermal, Optical and Vibrational Studies of a New Organic–Inorganic Hybrid Material (C5H16N2)Cd1.5Cl5. Bull. Mater. Sci. 2017, 40 (1), 55–66. https://doi.org/10.1007/s12034-017-1361-9.Search in Google Scholar
48. Gole, A.; Dash, C.; Ramakrishnan, V.; Sainkar, S. R.; Mandale, A. B.; Rao, M.; Sastry, M. Pepsin−Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity. Langmuir 2001, 17 (5), 1674–1679. https://doi.org/10.1021/la001164w.Search in Google Scholar
49. Arulkumar, S.; Sabesan, M. Rapid Preparation Process of Antiparkinsonian Drug Mucuna Pruriens Silver Nanoparticle by Bioreduction and Their Characterization. Pharmacogn. Res. 2010, 2 (4), 233–236. https://doi.org/10.4103/0974-8490.69112.Search in Google Scholar PubMed PubMed Central
50. Rolim, J. P. M. L.; de-Melo, M. A. S.; Guedes, S. F.; Albuquerque-Filho, F. B.; de Souza, J. R.; Nogueira, N. A. P.; Zanin, I. C. J.; Rodrigues, L. K. A. The Antimicrobial Activity of Photodynamic Therapy against Streptococcus Mutans Using Different Photosensitizers. J. Photochem. Photobiol., B 2012, 106, 40–46. https://doi.org/10.1016/j.jphotobiol.2011.10.001.Search in Google Scholar PubMed
51. Periasamy, S.; Joo, H.-S.; Duong, A. C.; Bach, T.-H. L.; Tan, V. Y.; Chatterjee, S. S.; Cheung, G. Y. C.; Otto, M. How Staphylococcus Aureus Biofilms Develop Their Characteristic Structure. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (4), 1281–1286. https://doi.org/10.1073/pnas.1115006109.Search in Google Scholar PubMed PubMed Central
52. Collins, T. L.; Markus, E. A.; Hassett, D. J.; Robinson, J. B. The Effect of a Cationic Porphyrin on Pseudomonas Aeruginosa Biofilms. Curr. Microbiol. 2010, 61 (5), 411–416. https://doi.org/10.1007/s00284-010-9629-y.Search in Google Scholar PubMed
53. Zhang, M.; Zhang, K.; De Gusseme, B.; Verstraete, W.; Field, R. The Antibacterial and Anti-biofouling Performance of Biogenic Silver Nanoparticles by Lactobacillus Fermentum. Biofouling 2014, 30 (3), 347–357. https://doi.org/10.1080/08927014.2013.873419.Search in Google Scholar PubMed
54. Khanal, L. N.; Sharma, K. R.; Paudyal, H.; Parajuli, K.; Dahal, B.; Ganga, G. C.; Pokharel, Y. R.; Kalauni, S. K. Green Synthesis of Silver Nanoparticles from Root Extracts of Rubus Ellipticus Sm. And Comparison of Antioxidant and Antibacterial Activity. J. Nanomater. 2022, 2022, 1–11. https://doi.org/10.1155/2022/1832587.Search in Google Scholar
55. Kemala, P.; Idroes, R.; Khairan, K.; Ramli, M.; Jalil, Z.; Idroes, G. M.; Tallei, T. E.; Helwani, Z.; Safitri, E.; Iqhrammullah, M.; Nasution, R. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia. Molecules 2022, 27 (16). https://doi.org/10.3390/molecules27165310.Search in Google Scholar PubMed PubMed Central
56. Giri, A. K.; Jena, B.; Biswal, B.; Pradhan, A. K.; Arakha, M.; Acharya, S.; Acharya, L. Green Synthesis and Characterization of Silver Nanoparticles Using Eugenia Roxburghii DC. Extract and Activity against Biofilm-Producing Bacteria. Sci. Rep. 2022, 12 (1), 8383. https://doi.org/10.1038/s41598-022-12484-y.Search in Google Scholar PubMed PubMed Central
57. Mouzaki, M.; Maroui, I.; Mir, Y.; Lemkhente, Z.; Attaoui, H.; El Ouardy, K.; Lbouhmadi, R.; Mouine, H. Green Synthesis of Silver Nanoparticles and Their Antibacterial Activities. Green Process. Synth. 2022, 11 (1), 1136–1147. https://doi.org/10.1515/gps-2022-0061.Search in Google Scholar
58. Goyal, G.; Hwang, J.; Aviral, J.; Seo, Y.; Jo, Y.; Son, J.; Choi, J. Green Synthesis of Silver Nanoparticles Using β-Glucan, and Their Incorporation into Doxorubicin-Loaded Water-In-Oil Nanoemulsions for Antitumor and Antibacterial Applications. J. Ind. Eng. Chem. 2017, 47, 179–186. https://doi.org/10.1016/j.jiec.2016.11.029.Search in Google Scholar
59. Saqib, S.; Faryad, S.; Afridi, M. I.; Arshad, B.; Younas, M.; Naeem, M.; Zaman, W.; Ullah, F.; Nisar, M.; Ali, S.; Elgorban, A. M.; Syed, A.; Elansary, H. O.; El-Abedin, T. K. Z. Bimetallic Assembled Silver Nanoparticles Impregnated in Aspergillus Fumigatus Extract Damage the Bacterial Membrane Surface and Release Cellular Contents. Coat. World 2022, 12 (10), 1505. https://doi.org/10.3390/coatings12101505.Search in Google Scholar
60. Khan, S.; Rukayadi, Y.; Jaafar, A. H.; Ahmad, N. H. Antibacterial Potential of Silver Nanoparticles (SP-AgNPs) Synthesized from (Wight) Walp. Against Selected Foodborne Pathogens. Heliyon 2023, 9 (12), e22771. https://doi.org/10.1016/j.heliyon.2023.e22771.Search in Google Scholar PubMed PubMed Central
61. Bose, D.; Chatterjee, S. Biogenic Synthesis of Silver Nanoparticles Using Guava (Psidium Guajava) Leaf Extract and its Antibacterial Activity against Pseudomonas Aeruginosa. Appl. Nanosci. 2016, 6 (6), 895–901. https://doi.org/10.1007/s13204-015-0496-5.Search in Google Scholar
62. Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20 (5), 8856–8874. https://doi.org/10.3390/molecules20058856.Search in Google Scholar PubMed PubMed Central
63. Dakal, T. C.; Kumar, A.; Majumdar, R. S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. https://doi.org/10.3389/fmicb.2016.01831.Search in Google Scholar PubMed PubMed Central
64. Yin, I. X.; Zhang, J.; Zhao, I. S.; Mei, M. L.; Li, Q.; Chu, C. H. The Antibacterial Mechanism of Silver Nanoparticles and its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764.Search in Google Scholar PubMed PubMed Central
65. Kirstein, J.; Turgay, K. A New Tyrosine Phosphorylation Mechanism Involved in Signal Transduction in Bacillus Subtilis. J. Mol. Microbiol. Biotechnol. 2005, 9 (3–4), 182–188. https://doi.org/10.1159/000089646.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent
- Compressive properties and energy absorption of ordered porous aluminum with strengthening structures
- Ultrasound’s influence on the properties of cellulose/Halloysite clay nanotube nanocomposites
- Polymer/phytochemical mediated eco-friendly synthesis of Cu/Zn doped hematite nanoparticles revealing biological properties and photocatalytic activity
- Green synthesis of silver nanoparticles using Pupalia lappacea L. (Juss) and their antimicrobial application
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Effects of spray pyrolysis parameters on structural and morphological properties of WO3 thin films prepared from WCl6 precursor and hydrazine mono hydrate as a solvent
- Compressive properties and energy absorption of ordered porous aluminum with strengthening structures
- Ultrasound’s influence on the properties of cellulose/Halloysite clay nanotube nanocomposites
- Polymer/phytochemical mediated eco-friendly synthesis of Cu/Zn doped hematite nanoparticles revealing biological properties and photocatalytic activity
- Green synthesis of silver nanoparticles using Pupalia lappacea L. (Juss) and their antimicrobial application
- News
- DGM – Deutsche Gesellschaft für Materialkunde