Abstract
1.0 wt.% Y2O3 (alloy SY), TiO2 (alloy ST), ZrO2 (alloy SZ), dispersed 79W–10Ni–5Nb–5Mo (in weight%) alloys have been produced by mechanical alloying with 5:1 ball to powder weight ratio (BPR) for 20 h at 300 rpm in toluene medium. The powders were consolidated by spark plasma sintering at 1,100 °C for 5 min and at 65 MPa pressure. Oxidation study of the consolidated alloys was carried out at 1,000 °C for 10 h to establish the sustainability at elevated temperature. The study shows that alloys SY, ST exhibit compressive residual stress and alloy SZ evidences tensile residual stress in the oxidized condition. The oxidation rate is significantly lower in alloy SY due to passive layer formation facilitated by Y2O3 and Ni. The oxidation kinetic study also suggests substantial reduction in rate constant in alloy SY. The present study also provides interesting inputs regarding development of oxidation resistant alloys for high temperature applications.
Acknowledgments
Support from FIST, DST regarding XRD study at NIT Rourkela is also acknowledged.
-
Research ethics: Not Applicable.
-
Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Mr. Atiqur Rahman Khan has written the manuscript, Mr. Sambit Swain helped in editing and revising the manuscript, Dr. A. Patra supervised the research work and done editing, Dr. D. Arvindha Babu has assisted in analysis and revision, Dr. Bhaskar Majumdar has also assisted in analysis and revision.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The research has been funded by ARMREB (DRDO) (project number: ARMREB/MAA/2017/196).
-
Data availability: All data generated or analyzed during this study are included in this published article and its supplementary information files.
References
1. Yi, G.; Liu, W.; Ye, C.; Xue, X.; Yan, Y. Corros. Sci. 2021, 192. https://doi.org/10.1016/j.corsci.2021.109820.Suche in Google Scholar
2. Cifuentes, S. C.; Monge, M. A.; Pérez, P. Corros. Sci. 2012, 57, 114–121. https://doi.org/10.1016/j.corsci.2011.12.027.Suche in Google Scholar
3. Gromov, A.; Kwon, Y. S.; Choi, P. P. Scr. Mater. 2005, 52 (5), 375–380. https://doi.org/10.1016/j.scriptamat.2004.10.029.Suche in Google Scholar
4. ASM Specialty Handbook: Heat-Resistant Materials; Davis, J. R., Ed.; ASM International: Materials Park, OH, 1999.Suche in Google Scholar
5. Kadiri, H. E. L.; Molins, R.; Bienvenu, Y.; Horstemeyer, M. F. Oxid. Met. 2005, 64, 63–97. https://doi.org/10.1007/s11085-005-5715-0.Suche in Google Scholar
6. Pei, H.; Li, M.; Wang, P.; Yao, X.; Wen, Z.; Yue, Z. Corros. Sci. 2021, 191. https://doi.org/10.1016/j.corsci.2021.109737.Suche in Google Scholar
7. Nagy, D.; Baker, S. A. H. Scr. Mater. 2022, 209. https://doi.org/10.1016/j.scriptamat.2021.114373.Suche in Google Scholar
8. Salje, E.; Viswanathan, K. Acta Crystallogr. Sect. A 1975, 31, 356–359. https://doi.org/10.1107/S0567739475000745.Suche in Google Scholar
9. Vogt, T.; Woodward, P. M.; Hunter, B. A. J. Solid State Chem. 1999, 144, 209–215. https://doi.org/10.1006/jssc.1999.8173.Suche in Google Scholar
10. Hirai, T.; Panayotis, S.; Barabash, V.; Amzallag, C.; Escourbiac, F.; Durocher, A.; Merola, M.; Linke, J.; Loewenhoff, T.; Pintsuk, G.; Wirtz, M.; Uytdenhouwen, I. Nucl. Mater. Energy 2016, 9, 616–622. https://doi.org/10.1016/j.nme.2016.07.003.Suche in Google Scholar
11. Klein, F.; Wegener, T.; Litnovsky, A.; Rasinski, M.; Tan, X. Y.; Julian, J. G.; Schmitz, J.; Bram, M.; Coenen, J. W.; Linsmeier, Ch.. Nucl. Mater. Energy 2018, 15, 226–231. https://doi.org/10.1016/j.nme.2018.05.003.Suche in Google Scholar
12. Wegener, T.; Klein, F.; Litnovsky, A.; Rasinski, M.; Brinkmann, J.; Koch, F.; Linsmeier, C. Fusion Eng. Des. 2017, 124, 183–186. https://doi.org/10.1016/j.fusengdes.2017.03.072.Suche in Google Scholar
13. Talekar, V. R.; Patra, A.; Sahoo, S. K. Oxid. Met. 2020, 93, 17–28. https://doi.org/10.1007/s11085-019-09942-w.Suche in Google Scholar
14. Khan, A. R.; Patra, A.; Majumdar, B. Int. J. Refract. Met. Hard Mater. 2022, 103. https://doi.org/10.1016/j.ijrmhm.2021.105753.Suche in Google Scholar
15. Telu, S.; Patra, A.; Sankaranarayana, M.; Mitra, R.; Pabi, S. K. Int. J. Refract. Met. Hard Mater. 2013, 36, 191–203. https://doi.org/10.1016/j.ijrmhm.2012.08.015.Suche in Google Scholar
16. Yang, Y. A.; Ma, Y.; Yao, J. N.; Loo, B. H. J. Non-Cryst. Solids 2000, 272, 71–75. https://doi.org/10.1016/S0022-3093(00)00226-X.Suche in Google Scholar
17. Gulbransen, E. A.; Andrew, K. F.; Brassart, F. A. J. Electrochem. Soc. 1963, 110 (9), 952–959. https://doi.org/10.1149/1.2425918.Suche in Google Scholar
18. Castro, I. A. d.; Datta, R. S.; Ou, J. Z.; Gomez, A. C.; Sriram, S.; Daeneke, T.; Zadeh, K. K. Adv. Mater. 2017, 29, 1701619. https://doi.org/10.1002/adma.201701619.Suche in Google Scholar PubMed
19. Concepcion, O.; Melo, O. D. E. J. Phys. Condens. Matter. 2023, 35, 143002. https://doi.org/10.1088/1361-648X/acb24a.Suche in Google Scholar PubMed
20. Melo, O. D. E.; Rueda, F. A.; Costa, V. T. J. Mater. Chem. C 2021, 9, 6579–6588. https://doi.org/10.1039/D1TC00696G.Suche in Google Scholar
21. Graham, M. J.; Sproule, G. I.; Capland, D.; Cohen, M. J. Electrochem. Soc. 1972, 119, 883. https://doi.org/10.1149/1.2404361.Suche in Google Scholar
22. Haugsrud, R. Corros. Sci. 2003, 45, 211–235. https://doi.org/10.1016/S0010-938X(02)00085-9.Suche in Google Scholar
23. Borowski, T.; Zielinska, K.; Spychalski, M.; Cieslak, B. A.; Zrodowski, Ł. Surf and Coating. Technol 2023, 473. https://doi.org/10.1016/j.surfcoat.2023.129911.Suche in Google Scholar
24. Xu, C.; Gao, W. Mater. Res. Innov. 2000, 3 (4), 231–235; https://doi.org/10.1007/s100190050008.Suche in Google Scholar
25. Ramachandran, K.; Jayakody, Y. C.; Jayaseelan, D. D. Int. J. Refract. Met. Hard Mater. 2023, 110. https://doi.org/10.1016/j.ijrmhm.2022.106033.Suche in Google Scholar
26. Birks, N.; Meier, G. H.; Pettit, F. S. Introduction To the High-Temperature Oxidation of Metals, 2nd ed.; Cambridge University Press: New York, USA, 2006.10.1017/CBO9781139163903Suche in Google Scholar
27. Habainy, J.; Iyengar, S.; Surreddi, K. B.; Lee, Y.; Dai, Y. J. Nucl. Mater. 2018, 506, 26–34. https://doi.org/10.1016/j.jnucmat.2017.12.018.Suche in Google Scholar
28. Patra, A.; Saxena, R.; Karak, S. K. Int. J. Refract. Met. Hard Mater. 2016, 60, 131–146. https://doi.org/10.1016/j.ijrmhm.2016.07.017.Suche in Google Scholar
29. Wu, Q.; Liu, Y.; Zhang, Z.; Qi, Y.; Zhang, C.; Zheng, H.; Xu, Y. Corros. Sci. 2021, 181. https://doi.org/10.1016/j.corsci.2021.109243.Suche in Google Scholar
30. Singh, R. N.; Singh, J. P.; Singh, A. Int. J. Hydrogen Energy 2008, 33, 4260–4264. https://doi.org/10.1016/j.ijhydene.2008.06.008.Suche in Google Scholar
31. Withers, P. J.; Bhadeshia, H. K. D. H. Mater. Sci. Technol. 2001, 17, 366–375. https://doi.org/10.1179/026708301101510087.Suche in Google Scholar
32. Finch, D. M. A Review of Non-destructive Residual Stress Measurement Techniques, ERA Report 94-0101R, ERA Technology Ltd, Surrey, UK, 1994.Suche in Google Scholar
33. Li, Z.; Chen, Y.; Wei, S.; Zhao, Y.; Wang, T.; Xu, L. Mater. Sci. Eng. A 2022, 832. https://doi.org/10.1016/j.msea.2021.142483.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- 5th International Conference on Processing and Characterization of Materials 2023 (ICPCM 2023)
- Original Papers
- Experimental studies on coal mine over-burden incorporated concrete as a sustainable substitute for fine aggregate in concrete construction
- A complex impedance spectroscopy study on PVDF/PANI/CoFe2O4 composites
- Optimizing electrical properties and efficiency of copper-doped CdS and CdTe solar cells through advanced ETL and HTL integration: a comprehensive experimental and numerical study
- Synthesis and characterization of hydroxyapatite from Ariidea fish bone as reinforcement material for (chios mastic gum: papyrus vaccine pollen) bio composite bony scaffold
- Optimization of the process parameter of lean-grade self-reducing pellets by surface response modelling
- From raw materials to functional material: synthesis and piezoelectric characterization of PIN–PT binary relaxor material
- Effect of ball milling on bulk MoS2 and the development of Al–MoS2 nanocomposites by powder metallurgy route
- Effect of beeswax on the physico-mechanical properties of poly (butylene adipate terephthalate)/poly lactic acid blend films
- Effect of Y2O3, TiO2, ZrO2 dispersion on oxidation resistance of W–Ni–Nb–Mo alloys
- Multifunctional characterisation of pressureless sintered Al2O3 –CaTiO3 nanocomposite
- Silicon–carbon superhydrophobic nano-structure for next generation semiconductor industry
- Interrelation between mechanical and electromagnetic radiation emission parameters with variable notch-width ratios under tensile fracture in silicon steel
- Effect of tool rotation and welding speed on microstructural and mechanical properties of dissimilar AA6061-T6 and AA5083-H12 joint in friction stir welding
- Effect of bentonite and molasses binder content on physical and mechanical properties of green and fired mill scale pellets
- FA-GGBFS based geopolymer concrete incorporating CMRW and SS as fine and coarse aggregates
- Characteristic study of intra woven green fibers for structural application
- An experimental investigation by electrochemical impedance spectroscopy for the study of mechanism of copper electrodeposition from an acidic bath
- Bažant-Le-Kirane Paradox of fatigue failure in engineering materials
- Thermal modeling and analysis of laser transmission welding of polypropylene: process mechanics and parameters
- The influence of welding modes on metallic structures processed through WAAM
- Ultrasonic metal welding of Al/Cu joints with Ni coating: parametric effects on joint performance and microstructural modifications
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Editorial
- 5th International Conference on Processing and Characterization of Materials 2023 (ICPCM 2023)
- Original Papers
- Experimental studies on coal mine over-burden incorporated concrete as a sustainable substitute for fine aggregate in concrete construction
- A complex impedance spectroscopy study on PVDF/PANI/CoFe2O4 composites
- Optimizing electrical properties and efficiency of copper-doped CdS and CdTe solar cells through advanced ETL and HTL integration: a comprehensive experimental and numerical study
- Synthesis and characterization of hydroxyapatite from Ariidea fish bone as reinforcement material for (chios mastic gum: papyrus vaccine pollen) bio composite bony scaffold
- Optimization of the process parameter of lean-grade self-reducing pellets by surface response modelling
- From raw materials to functional material: synthesis and piezoelectric characterization of PIN–PT binary relaxor material
- Effect of ball milling on bulk MoS2 and the development of Al–MoS2 nanocomposites by powder metallurgy route
- Effect of beeswax on the physico-mechanical properties of poly (butylene adipate terephthalate)/poly lactic acid blend films
- Effect of Y2O3, TiO2, ZrO2 dispersion on oxidation resistance of W–Ni–Nb–Mo alloys
- Multifunctional characterisation of pressureless sintered Al2O3 –CaTiO3 nanocomposite
- Silicon–carbon superhydrophobic nano-structure for next generation semiconductor industry
- Interrelation between mechanical and electromagnetic radiation emission parameters with variable notch-width ratios under tensile fracture in silicon steel
- Effect of tool rotation and welding speed on microstructural and mechanical properties of dissimilar AA6061-T6 and AA5083-H12 joint in friction stir welding
- Effect of bentonite and molasses binder content on physical and mechanical properties of green and fired mill scale pellets
- FA-GGBFS based geopolymer concrete incorporating CMRW and SS as fine and coarse aggregates
- Characteristic study of intra woven green fibers for structural application
- An experimental investigation by electrochemical impedance spectroscopy for the study of mechanism of copper electrodeposition from an acidic bath
- Bažant-Le-Kirane Paradox of fatigue failure in engineering materials
- Thermal modeling and analysis of laser transmission welding of polypropylene: process mechanics and parameters
- The influence of welding modes on metallic structures processed through WAAM
- Ultrasonic metal welding of Al/Cu joints with Ni coating: parametric effects on joint performance and microstructural modifications
- News
- DGM – Deutsche Gesellschaft für Materialkunde