Startseite Experimental studies on coal mine over-burden incorporated concrete as a sustainable substitute for fine aggregate in concrete construction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental studies on coal mine over-burden incorporated concrete as a sustainable substitute for fine aggregate in concrete construction

  • Biswajit Jena ORCID logo EMAIL logo , Nikhil P. Zade , Pradip Sarkar und Swapan Kumar Karak
Veröffentlicht/Copyright: 13. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The growing demand for sustainable construction has encouraged the exploration of utilizing industrial waste in cementitious materials, aiming to conserve natural resources and manage industrial waste efficiently. This study focuses on incorporating coal mine overburden (CMOB) as a substitute for natural fine aggregate in concrete mixes. The research systematically assesses concrete properties at curing ages of 28, 56, and 90 days. Laboratory tests are conducted to examine compressive strength, splitting tensile strength, flexural strength, and impact resistance of CMOB-incorporated concrete. Incorporating CMOB up to a 60 % replacement level enhances concrete strength, impact resistance, resistance to water penetrability, and microstructure. Optimal mechanical strength, enhanced impact resistance, and improved transport properties are achieved at this level, resulting in a 10–35 % increase in strength and a 13–29 % improvement in resistance to water penetrability compared to control concrete. Microstructural analysis indicates similarities in surface morphology and micro-cracks within the interfacial transition zone (ITZ) to normal concrete. Given the high water absorption of CMOB, the use of superplasticizers is advisable to maintain the desired workability. These findings support the practical utilization of CMOB in concrete applications, offering potential environmental and economic benefits.


Corresponding author: Biswajit Jena, Department of Civil Engineering, National Institute of Technology, Rourkela, Odisha 769008, India; and Department of Civil Engineering, DRIEMS University, Cuttack, Odisha, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Detailed information about an individual author’s contribution is as follows: Biswajit Jena: Writing – original draft, Visualization, Methodology, investigation, Formal analysis, Data curation, Conceptualization. Nikhil P. Zade: Writing – original draft, Visualization, Supervision. Pradip Sarkar: Writing – original draft, Writing – review & editing Supervision, Conceptualization. Swapan Kumar Karak: Review & editing, Supervision, Conceptualization.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Mehra, P.; Gupta, R. C.; Thomas, B. S. J. Clean. Prod. 2016, 120, 241. https://doi.org/10.1016/j.jclepro.2016.01.015.Suche in Google Scholar

2. Mukharjee, B. B.; Barai, S. V. J. Clean. Prod. 2014, 83, 273. https://doi.org/10.1016/j.jclepro.2014.07.045.Suche in Google Scholar

3. Aprianti, E. J. Clean. Prod. 2017, 142, 4178. https://doi.org/10.1016/j.jclepro.2015.12.115.Suche in Google Scholar

4. Paris, J. M.; Roessler, J. G.; Ferraro, C. C.; DeFord, H. D.; Townsend, T. G. J. Clean. Prod. 2016, 121, 1. https://doi.org/10.1016/j.jclepro.2016.02.013.Suche in Google Scholar

5. Rana, A.; Kalla, P.; Verma, H. K.; Mohnot, J. K. J. Clean. Prod. 2016, 135, 312. https://doi.org/10.1016/j.jclepro.2016.06.126.Suche in Google Scholar

6. Sharma, R.; Bansal, P. P. J. Clean. Prod. 2016, 112, 473. https://doi.org/10.1016/j.jclepro.2015.08.042.Suche in Google Scholar

7. Bogas, J. A.; De Brito, J.; Ramos, D. J. Clean. Prod. 2016, 115, 294. https://doi.org/10.1016/j.jclepro.2015.12.065.Suche in Google Scholar

8. Oliveira, R.; de Brito, J.; Veiga, R. J. Clean. Prod. 2015, 95, 75. https://doi.org/10.1016/j.jclepro.2015.02.049.Suche in Google Scholar

9. Saha, A. K.; Sarker, P. K. J. Clean. Prod. 2017, 162, 438. https://doi.org/10.1016/j.jclepro.2017.06.035.Suche in Google Scholar

10. Tiwari, A.; Singh, S.; Nagar, R. J. Clean. Prod. 2016, 135, 490. https://doi.org/10.1016/j.jclepro.2016.06.130.Suche in Google Scholar

11. Jena, B.; Zade, N. P.; Sarkar, P.; Karak, S. K. Constr. Build. Mater. 2024, 411, 134488. https://doi.org/10.1016/j.conbuildmat.2023.134488.Suche in Google Scholar

12. Gupta, A. K.; Paul, B. Int. J. Min. Miner. Eng. 2015, 6 (2), 172. https://doi.org/10.1504/IJMME.2015.070380.Suche in Google Scholar

13. Gupta, A. K.; Paul, B. Res. J. Environ. Sci. 2015, 9 (7), 307. https://doi.org/10.3923/rjes.2015.307.319.Suche in Google Scholar

14. Parthasarathi, N.; Ramalinga Reddy, B. M.; Satyanarayanan, K. S. Indian J. Sci. Technol. 2016, 9 (35). https://doi.org/10.17485/ijst/2016/v9i35/99052.Suche in Google Scholar

15. Shettima, A. U.; Hussin, M. W.; Ahmad, Y.; Mirza, J. Constr. Build. Mater. 2016, 120, 72. https://doi.org/10.1016/j.conbuildmat.2016.05.095.Suche in Google Scholar

16. Kuranchie, F. A.; Shukla, S. K.; Habibi, D.; Mohyeddin, A. Cogent Eng. 2015, 2 (1). https://doi.org/10.1080/23311916.2015.1083137.Suche in Google Scholar

17. Thomas, B. S.; Damare, A.; Gupta, R. C. Constr. Build. Mater. 2013, 48, 894. https://doi.org/10.1016/j.conbuildmat.2013.07.075.Suche in Google Scholar

18. Widojoko, L.; Hardjasaputra, H.; Susilowati, S. Study of Gold Mine Tailings Utilization as Fine Aggregate Material for Producing Mortar Based on Concept of Green Technology. In 3rd International Conference of Engineering & Technology Development, 2013; p. 8.Suche in Google Scholar

19. Mishra, A.; Das, S. K.; Reddy, K. R. J. Mater. Civ. Eng. 2023, 34 (10), 725. https://doi.org/10.1061/JMCEE7.MTENG-15424.Suche in Google Scholar

20. Chandar, K. R.; Gayana, B. C.; Sainath, V. Adv. Concr. Constr. 2016, 4 (4), 243. https://doi.org/10.12989/acc.2016.4.4.243.Suche in Google Scholar

21. Mundra, S.; Agrawal, V.; Nagar, R. J. Build. Eng. 2020, 32, 101534. https://doi.org/10.1016/j.jobe.2020.101534.Suche in Google Scholar

22. Rathore, A. S.; Pradhan, M.; Deo, S. V. Int. J. Adv. Res. Eng. Technol. 2020, 11 (9), 368. https://doi.org/10.34218/IJARET.11.9.2020.038.Suche in Google Scholar

23. Islam, N.; Rabha, S.; Subramanyam, K. S. V.; Saikia, B. K. Chemosphere 2021, 274. https://doi.org/10.1016/j.chemosphere.2021.129736.Suche in Google Scholar PubMed

24. Singh, R. Principles and Practices of Modern Coal Mining; New Age International (P) Limited: New Delhi, India, 2005.Suche in Google Scholar

25. IS 12269. Ordinary Portland Cement, 53 Grade: Specification; Bureau of Indian Standards: New Delhi, India, 1987.Suche in Google Scholar

26. ASTM C150/C150M. Standard Specification for Portland Cement; ASTM International: West Conshohocken, PA, 2019.Suche in Google Scholar

27. ASTM C33/C33M. Standard Specification for Concrete Aggregates; ASTM International: West Conshohocken, PA, 2018.Suche in Google Scholar

28. ASTM C128. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM International: West Conshohocken, PA, 2015.Suche in Google Scholar

29. IS: 2386 (Part III). Methods of Test for Aggregates for Specific Gravity, Density, Voids, Absorption and Bulking; Bureau of Indian Standards: New Delhi, India, 1963.Suche in Google Scholar

30. IS 383. Coarse and Fine Aggregate for Concrete-Specification; Bureau of Indian Standards: New Delhi, India, 2016.Suche in Google Scholar

31. BS 6349-1-1. General-Code of Practice for Planning and Design for Operations; The British Standards Institution: UK, 2013.Suche in Google Scholar

32. ASTM C88. Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate; ASTM International: West Conshohocken, PA, 1999.Suche in Google Scholar

33. IS: 2386 (Part V). Methods of Test for Aggregates for Concrete – Soundness; Bureau of Indian Standards: New Delhi, India, 1963.Suche in Google Scholar

34. ASTM C618. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolanas for Use in Concrete; ASTM International: West Conshohocken, PA, 2019.Suche in Google Scholar

35. Panda, S.; Sarkar, P.; Davis, R. J. Build. Eng. 2021, 35, 101987. https://doi.org/10.1016/j.jobe.2020.101987.Suche in Google Scholar

36. ASTM C311/C311M. Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete; ASTM International: West Conshohocken, PA, 2020.Suche in Google Scholar

37. IS 10262. Concrete Mix Proportioning-Guidelines; Bureau of Indian Standards: New Delhi, India, 2019.Suche in Google Scholar

38. IS 456. Indian Standard Plain and Reinforced Concrete Code of Practice; Bureau of Indian Standards: New Delhi, 2000.Suche in Google Scholar

39. ASTM C494/C494M-05. Standard Specification for Chemical Admixtures for Concrete; ASTM International: West Conshohocken, PA, 2005.Suche in Google Scholar

40. IS 9103. Indian Standard for Concrete Admixture Specifications; Bureau of Indian Standards: New Delhi, India, 1999.Suche in Google Scholar

41. ASTM C192/C192M. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory; ASTM International: West Conshohocken, PA, 2018.Suche in Google Scholar

42. IS 516. Method of Tests for Strength of Concrete; Bureau of Indian Standards: New Delhi, India, 1959.Suche in Google Scholar

43. ASTM C496/C496M. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, 2017.Suche in Google Scholar

44. ASTM C293/C293M. Standard Test Method for Flexural Strength of Concrete Specimens; ASTM International: West Conshohocken, PA, 2016.Suche in Google Scholar

45. ACI 544-2R. Measurement of Properties of Fiber Reinforced Concrete; American Concrete Institute: Farmington Hills, MI, USA, 1999.Suche in Google Scholar

46. IS 516, Part 5, Section 1. Hardened Concrete – Methods of Test Non-Destructive Testing of Concrete: Ultrasonic Pulse Velocity Testing; Bureau of Indian Standards: New Delhi, India, 2018.Suche in Google Scholar

47. IS 516, Part 5, Section 4. Hardened Concrete – Methods of Test Non-Destructive Testing of Concrete: Rebound Hammer Test; Bureau of Indian Standards: New Delhi, India, 2020.Suche in Google Scholar

48. ASTM C1585. Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes; Annual Book of ASTM Standards: West Conshohocken, PA, USA, 2013.Suche in Google Scholar

49. ASTM C143/C143M. Standard Test Method for Slump of Hydraulic-Cement Concrete; ASTM International: West Conshohocken, PA, 2020.Suche in Google Scholar

50. IS 1199. Methods of Sampling and Analysis of Concrete; Bureau of Indian Standards: New Delhi, India, 1959.Suche in Google Scholar

51. Patra, R. K.; Mukharjee, B. B. J. Clean. Prod. 2017, 165, 468. https://doi.org/10.1016/j.jclepro.2017.07.125.Suche in Google Scholar

52. CEB. Comité Euro-Internationaldu Béton; CEB-FIP Model Code 1990; Thomas Telford: London, 1993.Suche in Google Scholar

53. EHE. Spanish Code for Structural Concrete; EHE. Real Decreto 2661/1998: Madrid, 1998. [in Spanish].Suche in Google Scholar

54. GB 50010. Chinese Standard; Code for Design of Concrete Structures; China Building Press: Beijing, China, 2002. [in Chinese].Suche in Google Scholar

55. NBR 6118. Brazilian Association of Technical Standards; Design of Concrete Structures; Brazilian Technical Standards Association: Riode Janeiro, 2003. [in Portuguese].Suche in Google Scholar

56. Hueste, M. B. D.; Chompreda, P.; Trejo, D.; Cline, D. B. H.; Keating, P. B. Struct. J. 2004, 101, 457.Suche in Google Scholar

57. Xiao, J.; Li, J.; Zhang, C. Cem. Concr. Res. 2005, 35, 1187. https://doi.org/10.1016/j.cemconres.2004.09.020.Suche in Google Scholar

58. Kou, S. C.; Poon, C. S. Mag. Concr. Res. 2008, 60, 57. https://doi.org/10.1680/macr.2007.00052.Suche in Google Scholar

59. American Concrete Institute. ACI Committee 318. Building Code Requirements for Structural Concrete; American Concrete Institute: MI, Farmington Hills, 2011.Suche in Google Scholar

60. DG/TJ-008. Technical Code for Application of Recycled Aggregate Concrete; Shangai Construction Standard Society(SCSS): Shangai, 2007.Suche in Google Scholar

61. Alwash, M.; Breysse, D.; Sbartaï, Z. M. Constr. Build. Mater. 2015, 99, 235–245. https://doi.org/10.1016/j.conbuildmat.2015.09.023.Suche in Google Scholar

62. Alwash, M.; Breysse, D.; Sbartaï, Z. M.; Szilágyi, K.; Borosnyói, A. Constr. Build. Mater. 2017, 140, 354–363. https://doi.org/10.1016/j.conbuildmat.2017.02.129.Suche in Google Scholar

63. Breysse, D.; Martı´nez-Ferna´ndez, J. L. Mater. Struct. 2014, 47, 1589–1604. https://doi.org/10.1617/s11527-013-0139-9.Suche in Google Scholar

64. Revilla-Cuesta, V.; Shi, J.; Skaf, M.; Ortega-L´opez, V.; Manso, J. M. Dev. Built Environ. 2022, 12, 100097. https://doi.org/10.1016/j.dibe.2022.100097.Suche in Google Scholar

65. Revilla-Cuesta, V.; Ortega-Lopez, V.; Faleschini, F.; Espinosa, A. B.; Serrano-Lopez, R. Constr. Build. Mater. 2022, 347, 128549. https://doi.org/10.1016/j.conbuildmat.2022.128549.Suche in Google Scholar

66. Espinosa, A. B.; Revilla-Cuesta, V.; Skaf, M.; Faleschini, F.; Ortega-López, V. Appl. Sci. 2023, 13, 874. https://doi.org/10.3390/app13020874.Suche in Google Scholar

67. Singh, N.; Singh, S. P. Constr. Build. Mater. 2018, 181, 73–84. https://doi.org/10.1016/j.conbuildmat.2018.06.039.Suche in Google Scholar

68. Gagan, G. S.; Singh, N. Mater. Today Proc. 2023, 93, 79–84. https://doi.org/10.1016/j.matpr.2023.07.026.Suche in Google Scholar

69. Singh, N.; Arya, S.; Raj, M. M. Recycled Waste Materials. In Proceedings of EGRWSE; Agnihotri, A. K., Reddy, K. R., Bansal, A., Eds.; Springer: Singapore, Vol. 32, 2018; pp. 169–178.Suche in Google Scholar

70. ASTM C597. Standard Test Method for Ultrasonic Pulse Velocity Through Concrete Specimens; ASTM International: West Conshohocken, PA, 2002.Suche in Google Scholar

71. Masi, A.; Chiauzzi, L.; Manfredi, V. Constr. Build. Mater. 2016, 121, 576. https://doi.org/10.1016/j.conbuildmat.2016.06.017.Suche in Google Scholar

72. Pucinotti, R. Constr. Build. Mater. 2015, 75, 331. https://doi.org/10.1016/j.conbuildmat.2014.11.023.Suche in Google Scholar

73. Breysse, D. Constr. Build. Mater. 2012, 33, 139. https://doi.org/10.1016/j.conbuildmat.2011.12.103.Suche in Google Scholar

74. Mohammed, B. S.; Azmi, N. J.; Abdullahi, M. Constr. Build. Mater. 2011, 25, 1388. https://doi.org/10.1016/j.conbuildmat.2010.09.004.Suche in Google Scholar

75. Hashmi, A. F.; Shariq, M.; Baqi, A. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 4327. https://doi.org/10.1007/s40996-022-00905-x.Suche in Google Scholar

76. Alexander, M. G. Durability Index Testing Procedure Manual, Part 1; Standard Procedure for Preparation of Test Specimens, v4.5.1; University of Cape Town: Cape Town, South Africa, 2018.Suche in Google Scholar

Received: 2024-02-07
Accepted: 2024-06-12
Published Online: 2024-12-13
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. 5th International Conference on Processing and Characterization of Materials 2023 (ICPCM 2023)
  4. Original Papers
  5. Experimental studies on coal mine over-burden incorporated concrete as a sustainable substitute for fine aggregate in concrete construction
  6. A complex impedance spectroscopy study on PVDF/PANI/CoFe2O4 composites
  7. Optimizing electrical properties and efficiency of copper-doped CdS and CdTe solar cells through advanced ETL and HTL integration: a comprehensive experimental and numerical study
  8. Synthesis and characterization of hydroxyapatite from Ariidea fish bone as reinforcement material for (chios mastic gum: papyrus vaccine pollen) bio composite bony scaffold
  9. Optimization of the process parameter of lean-grade self-reducing pellets by surface response modelling
  10. From raw materials to functional material: synthesis and piezoelectric characterization of PIN–PT binary relaxor material
  11. Effect of ball milling on bulk MoS2 and the development of Al–MoS2 nanocomposites by powder metallurgy route
  12. Effect of beeswax on the physico-mechanical properties of poly (butylene adipate terephthalate)/poly lactic acid blend films
  13. Effect of Y2O3, TiO2, ZrO2 dispersion on oxidation resistance of W–Ni–Nb–Mo alloys
  14. Multifunctional characterisation of pressureless sintered Al2O3 –CaTiO3 nanocomposite
  15. Silicon–carbon superhydrophobic nano-structure for next generation semiconductor industry
  16. Interrelation between mechanical and electromagnetic radiation emission parameters with variable notch-width ratios under tensile fracture in silicon steel
  17. Effect of tool rotation and welding speed on microstructural and mechanical properties of dissimilar AA6061-T6 and AA5083-H12 joint in friction stir welding
  18. Effect of bentonite and molasses binder content on physical and mechanical properties of green and fired mill scale pellets
  19. FA-GGBFS based geopolymer concrete incorporating CMRW and SS as fine and coarse aggregates
  20. Characteristic study of intra woven green fibers for structural application
  21. An experimental investigation by electrochemical impedance spectroscopy for the study of mechanism of copper electrodeposition from an acidic bath
  22. Bažant-Le-Kirane Paradox of fatigue failure in engineering materials
  23. Thermal modeling and analysis of laser transmission welding of polypropylene: process mechanics and parameters
  24. The influence of welding modes on metallic structures processed through WAAM
  25. Ultrasonic metal welding of Al/Cu joints with Ni coating: parametric effects on joint performance and microstructural modifications
  26. News
  27. DGM – Deutsche Gesellschaft für Materialkunde
Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0054/html
Button zum nach oben scrollen