Startseite Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of RGO/γ-Fe2O3 nanocomposite for the removal of heavy metals from aqueous solutions

  • Mai Duc Dung , Bui Thi Hue , Luong Thi Kim Phuong , Le Thi Giang , Le Viet Bau und Nguyen Thi Lan EMAIL logo
Veröffentlicht/Copyright: 17. Februar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Reduced graphene oxide/maghemite (RGO/γ-Fe2O3) material was successfully synthesized by combining the modified Hummers method with co-precipitation (RGO 10 wt.%). γ-Fe2O3 nanoparticles with a particle size of ∼14.8 nm were distributed on the surface of RGO sheets. Results of Brunauer–Emmett–Teller analysis showed that RGO/γ-Fe2O3 had a mesoporous structure and a narrow capillary size distribution curve at about 13 nm. The specific surface area of the RGO/γ-Fe2O3 was 168 m2·g−1. The RGO/γ-Fe2O3 nanocomposite was used to adsorb arsenic As(V) and a mixture of heavy metals (As(V), Cr(VI), Pb(II), and Fe(III)) in water. The maximum adsorption efficiency of As(V) reached 98.9% after 45 min with an adsorption capacity of 5.93 mg·g−1, higher than the simultaneous adsorption of the four metal ions. Competitive adsorption decreased in the order As(V), Cr(VI), Pb(II), and Fe(III). Therefore, RGO/γ-Fe2O3 could be used as an effective adsorbent to remove heavy metals from aqueous solutions.


Corresponding author: Nguyen Thi Lan, Advanced Institute for Science and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam, E-mail: .

Acknowledgments

The authors thank Cuong N. D. of AIST for the useful discussions and Loan T. T. of ITIMS for the XRD analysis through Rietveld refinement method and this manuscript’s proofreading.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Hanoi University of Science and Technology under grant number T2020–SAHEP–035.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Guo, X., Du, B., Wei, Q., Yang, J., Yan, L., Xu, W. J. Hazard Mater. 2014, 278, 211–220. https://doi.org/10.1016/j.jhazmat.2014.05.075.Suche in Google Scholar PubMed

2. Vu, H. C., Dwivedi, A. D., Le, T. T., Seo, S. H., Kim, E. J., Chang, Y. S. Chem. Eng. J. 2017, 307, 220–229. https://doi.org/10.1016/j.cej.2016.08.058.Suche in Google Scholar

3. Singh, R., Singh, S., Parihar, P., Singh, V. P., Prasad, S. M. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. https://doi.org/10.1016/j.ecoenv.2014.10.009.Suche in Google Scholar PubMed

4. Li, W., Zhang, L., Peng, J., Li, N., Zhang, S., Guo, S. Ind. Crops Prod. 2008, 28, 294–302. https://doi.org/10.1016/j.indcrop.2008.03.007.Suche in Google Scholar

5. Zamani, H. A., Ganjali, M. R., Faridbod, F., Salavati-Niasari, M. Mater. Sci. Eng. C 2012, 32, 564–568. https://doi.org/10.1016/j.msec.2011.12.009.Suche in Google Scholar

6. Zong, P., Wang, S., Zhao, Y., Wang, H., Pan, H., He, C. Chem. Eng. J. 2013, 220, 45–52. https://doi.org/10.1016/j.cej.2013.01.038.Suche in Google Scholar

7. Maksoud, A., Elgarahy, A. M., Farrell, C., Al-Muhtaseb, A. H., Rooney, D. W., Osman, A. I. Coord. Chem. Rev. 2020, 403, 213096. https://doi.org/10.1016/j.ccr.2019.213096.Suche in Google Scholar

8. Ghasemabadi, S. M., Baghdadi, M., Safari, E., Ghazban, F. J. Environ. Chem. Eng. 2018, 6, 4840–4849. https://doi.org/10.1016/j.jece.2018.07.014.Suche in Google Scholar

9. Ubhi, M. K., Kaur, M., Singh, D., Greneche, J. M. Process. Appl. Ceram. 2017, 11, 247–257. https://doi.org/10.2298/PAC1704247K.Suche in Google Scholar

10. You, J., Zhao, Y., Wang, L., Bao, W., He, Y. J. Phys. Chem. Solids 2020, 142, 109441. https://doi.org/10.1016/j.jpcs.2020.109441.Suche in Google Scholar

11. Barbosa de Andrade, M., Sestito Guerra, A. C., Tonial Dos Santos, T. R., Cusioli, L. F., De Souza Antonio, R., Bergamasco, R. J. Environ. Chem. Eng. 2020, 8, 103903. https://doi.org/10.1016/j.jece.2020.103903.Suche in Google Scholar

12. Wang, Y., Wei, X., Qi, Y., Huang, H. Chemosphere 2021, 263, 127563. https://doi.org/10.1016/j.chemosphere.2020.127563.Suche in Google Scholar PubMed

13. Dung, M. D., Nga, T. T. V., Lan, N. T., Thanh, N. K. Anal. Sci. 2022, 38, 427–436. https://doi.org/10.1007/s44211-022-00064-z.Suche in Google Scholar PubMed

14. Hai, N. H., Phu, N. D., Luong, N. H., Chau, N., Chinh, H. D., Hoang, L. H., Leslie-Pelecky, D. L. J. Kor. Phys. Soc. 2008, 52, 1327–1331. https://doi.org/10.3938/jkps.52.1327.Suche in Google Scholar

15. Lan, N. T., Chi, D. T., Dinh, N. X., Hung, N. D., Lan, H., Tuan, P. A., Thang, L. H., Trung, N. N., Hoa, N. Q., Huy, T. Q., Quy, N. V., Duong, T. T., Phan, V. N., Le, A. T. J. Alloys Compd. 2014, 615, 843–848. https://doi.org/10.1016/j.jallcom.2014.07.042.Suche in Google Scholar

16. Wyckoff, R. W. G. Crystal Structures, 2nd ed.; Interscience Publishers: New York, vol. 1, 1963.Suche in Google Scholar

17. Pecharroman, C., Gonzalezcarreno, T., Iglesias, J. E. Phys. Chem. Miner. 1995, 22, 21–29. https://doi.org/10.1007/BF00202677.Suche in Google Scholar

18. Loan, T. T., Huy, D. K., Chung, H. M., Thanh, N. K., Hoan, T. D., Duong, N. P., Soontaranon, S., Klysubun, W. Mater. Today Commun. 2021, 26, 101733. https://doi.org/10.1016/j.mtcomm.2020.101733.Suche in Google Scholar

19. Chandrasekaran, S., Hur, S. H., Kim, E. J., Rajagopalan, B., Babu, K. F., Senthilkumar, V., Chung, J. S., Choi, W. M., Kim, Y. S. RSC Adv. 2015, 5, 29159–29166. https://doi.org/10.1039/C5RA02934A.Suche in Google Scholar

20. Aliahmad, M., Moghaddam, N. S. Mater. Sci. Pol. 2013, 31, 264–268. https://doi.org/10.2478/s13536-012-0100-6.Suche in Google Scholar

21. Liang, C., Liu, H., Zhou, J., Peng, X., Zhang, H. J. Chem. 2015, 2015, 791829. https://doi.org/10.1155/2015/791829.Suche in Google Scholar

22. Hung, P. V., Cuong, T. V., Hur, S. H., Oh, E., Kim, E. J., Shin, E. W., Chung, J. S. J. Mater. Chem. 2011, 21, 3371–3377. https://doi.org/10.1039/C0JM02790A.Suche in Google Scholar

23. Abdulhadi Alwahib, A. A., Kamil, Y. M., Abu Bakar, M. H., Muhammad Noor, A. S., Yaacob, M. H., Lim, H. N., Huang, N. M., Mahdi, M. A. IEEE Photonics J. 2018, 10, 4801310. https://doi.org/10.1109/JPHOT.2018.2877190.Suche in Google Scholar

24. Shi, H., Li, W., Zhong, L., Xu, C. Ind. Eng. Chem. Res. 2014, 53, 1108–1118. https://doi.org/10.1021/ie4027154.Suche in Google Scholar

25. Salviano, L. B., Da Silva Cardoso, T. M., Silva, G. C., Dantas, M. S. S., Ferreira, A. M. Mat. Res. 2018, 21, 20170764. https://doi.org/10.1590/1980-5373-mr-2017-0764.Suche in Google Scholar

26. Feng, Q., Chen, Z., Zhou, K., Sun, M., Ji, X., Zheng, H., Zhang, Y. ChemistrySelect 2021, 6, 8177–8181. https://doi.org/10.1002/slct.202101844.Suche in Google Scholar

27. Zubir, N. A., Yacou, C., Motuzas, J., Zhang, X., Diniz Da Costa, J. C. Sci. Rep. 2014, 4, 4594. https://doi.org/10.1038/srep04594.Suche in Google Scholar PubMed PubMed Central

28. Ashok Kumar, K. V., Chandana, L., Ghosal, P., Subrahmanyam, C. Mol. Catal. 2018, 451, 87–95. https://doi.org/10.1016/j.mcat.2017.11.014.Suche in Google Scholar

29. Chandra, V., Park, J., Chun, Y., Lee, J. W., Hwang, I. C., Kim, K. S. ACS Nano 2010, 4, 3979–3986. https://doi.org/10.1021/nn1008897.Suche in Google Scholar PubMed

30. Gomaa, H., Shenashen, M. A., Yamaguchi, H., Alamoudi, A. S., Abdelmottaleb, M., Cheira, M. F., Seaf El-Naser, T. A., El-Safty, S. A. J. Clean. Prod. 2018, 182, 910–925. https://doi.org/10.1016/j.jclepro.2018.02.063.Suche in Google Scholar

Received: 2021-10-21
Accepted: 2022-09-22
Published Online: 2023-02-17
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8612/pdf
Button zum nach oben scrollen