Abstract
Vacuum electron beam welding was applied to a 50 mm-thick TA15 titanium alloy plate. Microstructure observation and microhardness testing were performed. Meanwhile, the residual stress on the surface at different distances from the weld centre was measured via the hole drilling method. A finite element model for electron beam welding of the TA15 titanium alloy plate was constructed on commercial finite element software. Experimental results showed that the microstructure of the weld zone consisted of a basket martensitic phase. The highest microhardness in the weld zone was 409 HV, and the microhardness of the base metal was the lowest. The maximum gradient change area was located at the HAZ near the base metal. The peak value of longitudinal residual stress from the simulation was 880 MPa, which was in the weld metal. The sharp change area of longitudinal residual stress gradient was located in the base metal near HAZ.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors declare no competing interests.
-
Research funding: Natural Science Foundation of Gansu Province, China (No. 20JR5RA416); National Natural Science Foundation of China (No.51605384); Foundation of the Young Teachers in Lanzhou Jiaotong University (2017049); Gansu Provincial Young Doctors Fund (No. 2023QB-046). This project also is strongly supported by associate professor Li Yuanbo, Lanzhou Jiaotong University.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Liu, Q. M., Long, W. M., Fu, L., Zhang, Z. H., Zhang, L., Song, X. G. Fracture toughness evolution induced by hydrogen of TA10 titanium alloy welded joints. Chin. J. Mech. Eng. 2020, 56, 54–60. https://doi.org/10.3901/jme.2020.16.054.Suche in Google Scholar
2. Liu, C., Deng, C. Y., Gong, B. M., Zhang, C. Z., Liu, C., Liu, Y. Effect of microstructure inhomogeneity on mechanical properties of different zones in TA15 electron beam welded joints. Trans. Nonferrous Met. Soc. China 2020, 30, 678–687. https://doi.org/10.1016/s1003-6326(20)65245-1.Suche in Google Scholar
3. Suárez Fernández, D., Wynne, B. P., Crawforth, P., Jackson, M. Titanium alloy microstructure fingerprint plots from in-process machining. Mater. Sci. Eng. A 2021, 811, 141074. https://doi.10.1016/j.msea.2021.141074.10.1016/j.msea.2021.141074Suche in Google Scholar
4. Callegari, B., Oliveira, J. P., Aristizabal, K., Coelho, R. S., Brito, P. P., Wu, L., Schell, N., Soldera, F. A., Mücklich, F., Pinto, H. C. In-situ synchrotron radiation study of the aging response of Ti-6Al-4V alloy with different starting microstructures. Mater. Charact. 2020, 165, 110400. https://doi.10.1016/j.matchar.2020.110400.10.1016/j.matchar.2020.110400Suche in Google Scholar
5. Callegari, B., Oliveira, J. P., Coelho, R. S., Brito, P. P., Schell, N., Soldera, F. A., Mücklich, F., Sadik, M. I., García, J. L., Pinto, H. C. New insights into the microstructural evolution of Ti-5Al-5Mo-5V-3Cr alloy during hot working. Mater. Charact. 2020, 162, 110180. https://doi.10.1016/j.matchar.2020.110180.10.1016/j.matchar.2020.110180Suche in Google Scholar
6. Callegari, B., Campo, L., Aristizabal, K., Guitar, M. A., Warchomicka, F., Coelho, R. S., Brito, P. P., Soldera, F. A., Mücklich, F., Pinto, H. C. In situ assessment of isochronal phase transformations in a lamellar Ti–5Al–5Mo–5V–3Cr–1Zr alloy using synchrotron X-ray diffraction. J. Alloys Compd. 2021, 853, 157105. https://doi.10.1016/j.jallcom.2020.157105.10.1016/j.jallcom.2020.157105Suche in Google Scholar
7. Callegari, B., Aristizabal, K., Suarez, S., Wu, L., Coelho, R. S., Brito, P. P., García, J. L., Soldera, F. A., Mücklich, F., Pinto, H. C. In situ evaluation of the low-temperature aging response of Ti–5Al–5Mo–5V–3Cr alloy as influenced by starting microstructure. J. Alloys Compd. 2020, 835, 155331. https://doi.10.1016/j.jallcom.2020.155331.10.1016/j.jallcom.2020.155331Suche in Google Scholar
8. Xue, K. M., Guo, W. W., Shi, Y. B., Ji, X. H., Gan, G. Q., Li, P. Microstructure and tensile properties of multi-directional forging of TA15 titanium alloy. Rare Met. Mater. Eng. 2019, 48, 3340–3345.Suche in Google Scholar
9. Dong, X. J., Lu, S. Q., Wang, K. L., Ouyang, D. L. Study of the plascticity flow instability behavior of TA15 tiatanium alloy with beta transformed microstructure. Rare Met. Mater. Eng. 2018, 47, 1485–1491.Suche in Google Scholar
10. Oliveira, J. P., Shen, J. J., Escobar, J. D., Salvador, C. A. F., Schell, N., Zhou, N., Benafan, O. Laser welding of H-phase strengthened Ni-rich NiTi-20Zr high temperature shape memory alloy. Mater. Des. 2021, 202, 109533. https://doi.10.1016/j.matdes.2021.109533.10.1016/j.matdes.2021.109533Suche in Google Scholar
11. Wang, G. Q., Chen, Z. Y., Li, J. W., Liu, J. R., Wang, Q. J., Yang, R. Microstructure and mechanical properties of electron beam welded titanium alloy Ti-6246. J. Mater. Sci. Technol. 2016, 34, 570–576. https://doi.10.1016/j.jmst.2016.10.007.10.1016/j.jmst.2016.10.007Suche in Google Scholar
12. Hu, X., Peng, Z. C., Feng, G. J., Li, S., Deng, D., Yuan, J. Numerical simulation of residual stress and deformation of SUS310S stainless steel local vacuum electron beam welded joint. Chin. J. Mech. Eng. 2020, 56, 38–47. https://doi.10.3901/JME.2020.21.038.10.3901/JME.2020.21.038Suche in Google Scholar
13. Sisodia, R. P. S., Gáspár, M., Sepsi, M., Mertinger, V. Comparative evaluation of residual stresses in vacuum electron beam welded high strength steel S960QL and S960M butt joints. Vacuum 2021, 184, 109931. https://doi.10.1016/j.vacuum.2020.109931.10.1016/j.vacuum.2020.109931Suche in Google Scholar
14. Gao, F. Y., Gao, Q., Jiang, P., Liao, Z. Q. Analysis on mechanism of root defect in titanium alloy electron beam welding. Trans. China Weld. Inst. 2018, 39, 30–34. https://doi.10.12073/j.hjxb.2018390244.Suche in Google Scholar
15. Fu, P. F., Mao, Z. Y., Zuo, C. J., Wang, Y. J., Wang, C. M. Microstructures and fatigue properties of electron beam welds with beam oscillation for heavy section TC4-DT alloy. Chin. J. Aeronaut. 2014, 27, 1015–1021. https://doi.org/10.1016/j.cja.2014.03.020.Suche in Google Scholar
16. Liu, C., Zhang, J. X., Wu, B., Gong, S. L. Numerical investigation on the variation of welding stresses after material removal from a thick titanium alloy plate joined by electron beam welding. Mater. Des. 2012, 34, 609–617. https://doi.10.1016/j.matdes.2011.05.014.10.1016/j.matdes.2011.05.014Suche in Google Scholar
17. Li, Y. T., Wu, H. X., Dong, B., Xiao, S. C. Study on variation laws of inherent strain of Q345/SUS304 dissimilar steel welded joints. Chin. Mech. Eng. 2021, 32, 1868. https://doi.10.3969/j.issn.1004-132X.2021.15.013.Suche in Google Scholar
18. Han, L., Zhang, H., Zhang, W. F., Wang, Y. H., Yan, M. Q. Accurate test and analysis of TA15 titanium alloy hot-rolled platewith a large size and middle thickness. Rare Met. Mater. Eng. 2017, 46, 221–224.Suche in Google Scholar
19. Ma, J., Zhao, Z. H., Nie, B. H., Zheng, Z. T., Zhang, Z. Research on very high cycle fatigue behavior of the electron beam weldment for TC21 titanium alloy. Chin. J. Mech. Eng. 2015, 51, 68–75. https://doi.10.3901/JME.2015.12.069.10.3901/JME.2015.12.069Suche in Google Scholar
20. Long, J., Zhang, L. J., Zhang, L. L., Ning, J., Zhuang, M. X., Zhang, J. X., Na, S. J. Analysis of heterogeneity of fatigue properties of double-sided electron beam welded 140-mm thick TC4 titanium alloy joints. Int. J. Fatigue 2021, 142, 105942. https://doi.10.1016/j.ijfatigue.2020.105942.10.1016/j.ijfatigue.2020.105942Suche in Google Scholar
21. Han, W., Fu, L., Chen, H. Y. Effect of welding speed on fatigue properties of TC18 thick plate by electron beam welding. Rare Met. Mater. Eng. 2018, 8, 2335–2340. https://doi.10.1016/S1875-5372(18)30188-7.10.1016/S1875-5372(18)30188-7Suche in Google Scholar
22. Lancaster, R. J., Jeffs, S. P., Haigh, B. J., Barnard, N. C. Derivation of material properties using small punch and shear punch test methods. Mater. Des. 2022, 215, 110473. https://doi.10.1016/j.matdes.2022.110473.10.1016/j.matdes.2022.110473Suche in Google Scholar
23. Rahman Chukkan, J., Vasudevan, M., Muthukumaran, S., Ravi Kumar, R., Chandrasekhar, N. Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation. J. Mater. Process. Technol. 2015, 219, 48–59. https://doi.10.1016/j.jmatprotec.2014.12.008.10.1016/j.jmatprotec.2014.12.008Suche in Google Scholar
24. Ghafouri, M., Ahn, J., Mourujärvi, J., Björk, T., Larkiola, J. Finite element simulation of welding distortions in ultra-high strength steel S960 MC including comprehensive thermal and solid-state phase transformation models. Eng. Struct. 2020, 219, 110804. https://doi.10.1016/j.engstruct.2020.110804.10.1016/j.engstruct.2020.110804Suche in Google Scholar
25. Tsirkas, S. A., Papanikos, P., Kermanidis, T. Numerical simulation of the laser welding process in butt-joint specimens. J. Mater. Process. Technol. 2003, 134, 59–69. https://doi.10.1016/S0924-0136(02)00921-4.10.1016/S0924-0136(02)00921-4Suche in Google Scholar
26. Wang, Y. J., Fu, P. F., Guan, Y. J. Methods of study ing welds shape of TC4 allov with EBW. J. Aeronaut. Mater. 2009, 29, 53–56. https://doi.10.3969/j.issn.1005-5053.2009.02.011.Suche in Google Scholar
27. Zhan, X. H., Peng, Q. Y., Wei, Y. H., Ou, W. M. Experimental and simulation study on the microstructure of TA15 titanium alloy laser beam welded joints. Opt. Laser Technol. 2017, 94, 279–289. https://doi.10.1016/j.optlastec.2017.03.014.10.1016/j.optlastec.2017.03.014Suche in Google Scholar
28. Yang, S. Y., Yang, T., Cheng, X. W. Research status of electron beam welding of titanium alloy. Adv. Funct. Mater. 2019, 26, 1–6. https://doi.10.13228/j.boyuan.issn1005-8192.2019029.Suche in Google Scholar
29. Du, Q., Ni, J. Q., Liu, Y. M., Chang, R. H., Gao, F. Analysis on structure and property of heavy thickness weld joints of TA15 titanium alloy by high voltage electron beam. Tool. Eng. 2016, 50, 65. https://doi.10.3969/j.issn.1000-7008.2016.04.016.Suche in Google Scholar
30. Zhang, J. X., Dong, L. N., Zhang, L. J., Wang, Y. Q. Nonlinear gradient features of grain size in TIG welded joint for titanium alloy. Trans. China Weld. Inst. 2012, 33, 1–4.Suche in Google Scholar
31. Liu, H., Shui, J., Cai, T., Chen, Q., Song, X. G., Yang, G. J. Microstructural evolution and hardness response in the laser beam welded joints of pure titanium during recrystallization and grain growth. Mater. Charact. 2018, 145, 87–95. https://doi.10.1016/j.matchar.2018.08.036.10.1016/j.matchar.2018.08.036Suche in Google Scholar
32. Liu, H., Nakata, K., Zhang, J. X., Yamamoto, N., Liao, J. Microstructural evolution of fusion zone in laser beam welds of pure titanium. Mater. Charact. 2012, 65, 1–7. https://doi.10.1016/j.matchar.2011.12.010.10.1016/j.matchar.2011.12.010Suche in Google Scholar
33. Liu, H., Nakata, K., Yamamoto, N., Liao, J. Microstructural characteristics and mechanical properties in laser beam welds of Ti6Al4V alloy. J. Mater. Sci. 2012, 47, 1460–1470. https://doi.10.1007/s10853-011-5931-8.10.1007/s10853-011-5931-8Suche in Google Scholar
34. Venkateswarlu, K., Nanda Kumar, P., Ravikumar, P. S. Finite element simulation of temperature distribution, distortion and residual stresses of dissimilar welded joints. Mater. Today: Proc. 2018, 5, 11933–11940. https://doi.10.1016/j.matpr.2018.02.167.10.1016/j.matpr.2018.02.167Suche in Google Scholar
35. Liu, C., Zhang, J. X., Zhang, L. J. Heat source model for 2D welding temperature field simulation based on the configuration of welding line. Trans. Mater. Heat Treat. 2008, 29, 177–180.Suche in Google Scholar
36. Kumar, B., Bag, S. Phase transformation effect in distortion and residual stress of thin-sheet laser welded Ti-alloy. Opt. Lasers Eng. 2019, 122, 209–224. https://doi.10.1016/j.optlaseng.2019.06.008.10.1016/j.optlaseng.2019.06.008Suche in Google Scholar
37. Zhao, X. L., Wang, K. Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint. Int. J. Mater. Res. 2019, 110, 466–475. https://doi.10.3139/146.111757.10.3139/146.111757Suche in Google Scholar
38. Zhao, X. L., He, F., Wang, K. Residual stress and simulation of 304–430 stainless steel dissimilar laser-welded joints incorporating materials heterogeneity. Int. J. Mater. Res. 2021, 112, 527–537. https://doi.10.1515/ijmr-2020-7943.10.1515/ijmr-2020-7943Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Fabrication of magnetically separable Ag–ZnFe2O4 hollow nanospheres with efficient photocatalytic activity
- Optimization of magnetic properties of MnFe2O4 by modulating molarity of NaOH as precipitating agent
- Effect of synthesis method on structural and magnetic properties of La0.7Ca0.2Ba0.1MnO3
- Exploring the functional abilities of PVA–combeite composites as potential candidates for bone substitutes
- Study of optical, structural and radiation shielding properties of (55 − x)TeO2–20ZnO–25B2O3–xEr2O3 glass matrix
- Effect of post-weld heat treatment on corrosion resistance of X90 pipeline steel joints
- Microstructure and residual stress distribution of electron beam-welded joints of a 50 mm-thick TA15 titanium alloy plate
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Fabrication of magnetically separable Ag–ZnFe2O4 hollow nanospheres with efficient photocatalytic activity
- Optimization of magnetic properties of MnFe2O4 by modulating molarity of NaOH as precipitating agent
- Effect of synthesis method on structural and magnetic properties of La0.7Ca0.2Ba0.1MnO3
- Exploring the functional abilities of PVA–combeite composites as potential candidates for bone substitutes
- Study of optical, structural and radiation shielding properties of (55 − x)TeO2–20ZnO–25B2O3–xEr2O3 glass matrix
- Effect of post-weld heat treatment on corrosion resistance of X90 pipeline steel joints
- Microstructure and residual stress distribution of electron beam-welded joints of a 50 mm-thick TA15 titanium alloy plate
- News
- DGM – Deutsche Gesellschaft für Materialkunde