Home Study of optical, structural and radiation shielding properties of (55 − x)TeO2–20ZnO–25B2O3–xEr2O3 glass matrix
Article
Licensed
Unlicensed Requires Authentication

Study of optical, structural and radiation shielding properties of (55 − x)TeO2–20ZnO–25B2O3xEr2O3 glass matrix

  • Basant Kumar Yadav , Virendra Singh ORCID logo EMAIL logo , Rajat Gangwar and Neeraj Bisht
Published/Copyright: April 4, 2024
Become an author with De Gruyter Brill

Abstract

Erbium doped zinc boro-tellurite (EZBT) glass samples with molar composition of (55 − x)TeO2–20ZnO–25B2O3xEr2O3 (x = 0.0, 0.5, 1.0, 1.5 and 2.0 mol.%) were prepared by a conventional melt quenching technique. The prepared samples were characterised using X-ray diffraction, Fourier transform infrared spectroscopy and ultraviolet–visible spectroscopy techniques to investigate the structural, optical and dielectric properties. To study the radiation shielding capabilities, the parameters such as mass attenuation coefficient (μm), half-value layer (HVL), effective atomic number (Zeff) etc., were evaluated using WinXCom software. Judd–Ofelt analysis was carried out to determine the intensity of electronic transitions and other radiative transition parameters within the 4f shell of erbium ions. The μm values in a range of (108.5–0.03) cm2 g−1 for energy range (0.01–10) MeV were obtained for 2.0 mol.% erbium-doped tellurite glass matrix. The μm and HVL values were also compared with conventionally used ordinary concrete and specific lead borate glass at certain energies. The detailed investigation of this current EZBT glass matrix is very useful in the specific optical and radiation shielding applications of this EZBT glass.


Corresponding author: Virendra Singh, Department of Physics, G. B. Pant University of Agriculture & Technology, Pantnagar, U. S. Nagar, Uttarakhand, 263145, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Patra, P., Annapurna, K. Prog. Mater. Sci. 2022, 125, 100890. https://doi.org/10.1016/j.pmatsci.2021.100890.Search in Google Scholar

2. Misoguti, L., Kassab, L. R. P., Bordon, C. D. S., Rodrigues, J. J.Jr., Alencar, M. A. R. C. J. Alloys Compd. 2021, 872, 159738. https://doi.org/10.1016/j.jallcom.2021.159738.Search in Google Scholar

3. Azlan, M. N., Azlina, Y., Shaari, H. R., Nazrin, S. N., Al-Hada, N. M., Boukhris, I., Umar, S. A., Zaid, M. H. M., Hisam, R., Iskandar, S. M., Kenzhaliyev, B. K. J. Mater. Sci.: Mater. Electron. 2021, 32, 24415. https://doi.org/10.1007/s10854-021-06917-z.Search in Google Scholar

4. Nazrin, S. N., Halimah, M. K., Muhammad, F. D., Yip, J. S., Hasnimulyati, L., Faznny, M. F., Hazlin, M. A., Zaitizila, I. J. Non-Cryst. Solids 2018, 490, 35. https://doi.org/10.1016/j.jnoncrysol.2018.03.017.Search in Google Scholar

5. Gangwar, H., Singh, V., Tewari, B. S., Gupta, H., Purohit, L. P. Mater. Today: Proc. 2019, 17, 329. https://doi.org/10.1016/j.matpr.2019.06.437.Search in Google Scholar

6. Mahraz, Z. A. S., Sahar, M. R., Ghoshal, S. K. J. Mol. Struct. 2014, 1072, 238. https://doi.org/10.1016/j.molstruc.2014.05.017.Search in Google Scholar

7. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H. Radiat. Phys. Chem. 2004, 71, 653. https://doi.org/10.1016/j.radphyschem.2004.04.040.Search in Google Scholar

8. Bagheri, R., Moghaddam, A. K., Yousefnia, H. Nucl. Eng. Technol. 2016, 49, 216–223. https://doi.org/10.1016/j.net.2016.08.013.Search in Google Scholar

9. El-Mallawany, R. Tellurite Glasses Handbook; CRC Press Inc.: Boca Raton, 2002.Search in Google Scholar

10. Mahraz, Z., Sahar, M., Ghoshal, S., Dousti, M. J. Lumin. 2013, 144, 139. https://doi.org/10.1016/j.jlumin.2013.06.050.Search in Google Scholar

11. Judd, B. R. Phys. Rev. 1962, 127, 750. https://doi.org/10.1103/PhysRev.127.750.Search in Google Scholar

12. Ofelt, G. S. J. Chem. Phys. 1962, 37, 511. https://doi.org/10.1063/1.1701366.Search in Google Scholar

13. Marzouk, S. Y., Azooz, M. A., El Batal, H. A. J. Mol. Struct. 2021, 1243, 130925. https://doi.org/10.1016/j.molstruc.2021.130925.Search in Google Scholar

14. Shojiya, M., Takahashi, M., Kanno, R., Kawamoto, Y., Kadono, K. J. Appl. Phys. 1997, 82, 6259. https://doi.org/10.1063/1.366545.Search in Google Scholar

15. Eraiah, B. Bull. Mater. Sci. 2006, 29, 375. https://doi.org/10.1007/BF02704138.Search in Google Scholar

16. Prabhu, N. S., Hegde, V., Sayyed, M. I., Agar, O., Kamath, S. D. Mater. Chem. Phys. 2019, 230, 267. https://doi.org/10.1016/j.matchemphys.2019.03.074.Search in Google Scholar

17. Dong, M. G., El-Mallawany, R., Sayyed, M. I., Tekin, H. O. Radiat. Phys. Chem. 2017, 141, 172. https://doi.org/10.1016/j.radphyschem.2017.07.006.Search in Google Scholar

18. Abdul Aziz, S. H., El-Mallawany, R., Shawaliza Badaron, S., Mohamed Kamari, H., Amin Matori, K. Adv. Mater. Sci. Eng. 2015, 2015, 1–5. https://doi.org/10.1155/2015/628954.Search in Google Scholar

19. Clabel, H. J. L., Lozano, G., Marega, E.Jr, Rivera, V. A. G. J. Non-Cryst. Solids 2021, 553, 120520. https://doi.org/10.1016/j.jnoncrysol.2020.120520.Search in Google Scholar

20. Azlan, M., Halimah, M., Sidek, H. J. Lumin. 2017, 181, 400. https://doi.org/10.1016/j.jlumin.2016.09.047.Search in Google Scholar

21. Awang, A., Ghoshal, S. K., Sahar, M. R., Dousti, M. R., Amjad, R. J., Nawaz, F. Curr. Appl. Phys. 2013, 13, 1813. https://doi.org/10.1016/j.cap.2013.06.025.Search in Google Scholar

22. Yusof, N. N., Ghoshal, S. K., Azlan, M. N. J. Alloys Compd. 2017, 724, 1083. https://doi.org/10.1016/j.jallcom.2017.07.102.Search in Google Scholar

23. Bilir, G., Kaya, A., Cinkaya, H., Eryürek, G. Spectrochim. Acta, Part A 2016, 165, 183. https://doi.org/10.1016/j.saa.2016.04.042.Search in Google Scholar PubMed

24. Reddy, B., Hwang, H., Jho, Y., Ham, B., Sailaja, S. Ceram. Int. 2015, 41, 3684. https://doi.org/10.1016/j.ceramint.2014.11.040.Search in Google Scholar

25. Jaba, N., Mansour, H., Kanoun, A., Brenier, A., Champagnon, B. J. Lumin. 2009, 129, 270. https://doi.org/10.1016/j.jlumin.2008.10.006.Search in Google Scholar

26. Hamza, A. M., Halimah, M. K., Muhammad, F. D., Chan, K. T. J. Lumin. 2019, 207, 497. https://doi.org/10.1016/j.jlumin.2018.11.038.Search in Google Scholar

27. Azlan, M. N., Shafinas, S. Z., Halimah, M. K., Suriani, A. B. J. Mater. Sci.: Mater. Electron. 2019, 30, 18015–18024. https://doi.org/10.1007/s10854-019-02155-6.Search in Google Scholar

28. Bashter, I. I. Ann. Nucl. Energy 1997, 24, 1389. https://doi.org/10.1016/S0306-4549(97)00003-0.Search in Google Scholar

29. Limkitjaroenporn, P., Kaewkhao, J., Limsuwan, P., Chewpraditkul, W. J. Phys. Chem. Solids 2011, 72, 245. https://doi.org/10.1016/j.jpcs.2011.01.007.Search in Google Scholar

30. Tijani, S. A., Kamal, S. M., Al-Hadeethi, Y., Arib, M., Hussein, M. A., Wageh, S., Dim, L. A. J. Alloys Compd. 2018, 741, 293. https://doi.org/10.1016/j.jallcom.2018.01.109.Search in Google Scholar

31. Issa, S. A. M., Tekin, H. O., Erguzel, T. T., Susoy, G. Appl. Phys. A 2019, 125, 640. https://doi.org/10.1007/s00339-019-2941-x.Search in Google Scholar

Received: 2021-06-11
Accepted: 2023-07-25
Published Online: 2024-04-04
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8407/html
Scroll to top button