Abstract
Erbium doped zinc boro-tellurite (EZBT) glass samples with molar composition of (55 − x)TeO2–20ZnO–25B2O3–xEr2O3 (x = 0.0, 0.5, 1.0, 1.5 and 2.0 mol.%) were prepared by a conventional melt quenching technique. The prepared samples were characterised using X-ray diffraction, Fourier transform infrared spectroscopy and ultraviolet–visible spectroscopy techniques to investigate the structural, optical and dielectric properties. To study the radiation shielding capabilities, the parameters such as mass attenuation coefficient (μm), half-value layer (HVL), effective atomic number (Zeff) etc., were evaluated using WinXCom software. Judd–Ofelt analysis was carried out to determine the intensity of electronic transitions and other radiative transition parameters within the 4f shell of erbium ions. The μm values in a range of (108.5–0.03) cm2 g−1 for energy range (0.01–10) MeV were obtained for 2.0 mol.% erbium-doped tellurite glass matrix. The μm and HVL values were also compared with conventionally used ordinary concrete and specific lead borate glass at certain energies. The detailed investigation of this current EZBT glass matrix is very useful in the specific optical and radiation shielding applications of this EZBT glass.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no competing interests.
-
Research funding: None declared.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Patra, P., Annapurna, K. Prog. Mater. Sci. 2022, 125, 100890. https://doi.org/10.1016/j.pmatsci.2021.100890.Search in Google Scholar
2. Misoguti, L., Kassab, L. R. P., Bordon, C. D. S., Rodrigues, J. J.Jr., Alencar, M. A. R. C. J. Alloys Compd. 2021, 872, 159738. https://doi.org/10.1016/j.jallcom.2021.159738.Search in Google Scholar
3. Azlan, M. N., Azlina, Y., Shaari, H. R., Nazrin, S. N., Al-Hada, N. M., Boukhris, I., Umar, S. A., Zaid, M. H. M., Hisam, R., Iskandar, S. M., Kenzhaliyev, B. K. J. Mater. Sci.: Mater. Electron. 2021, 32, 24415. https://doi.org/10.1007/s10854-021-06917-z.Search in Google Scholar
4. Nazrin, S. N., Halimah, M. K., Muhammad, F. D., Yip, J. S., Hasnimulyati, L., Faznny, M. F., Hazlin, M. A., Zaitizila, I. J. Non-Cryst. Solids 2018, 490, 35. https://doi.org/10.1016/j.jnoncrysol.2018.03.017.Search in Google Scholar
5. Gangwar, H., Singh, V., Tewari, B. S., Gupta, H., Purohit, L. P. Mater. Today: Proc. 2019, 17, 329. https://doi.org/10.1016/j.matpr.2019.06.437.Search in Google Scholar
6. Mahraz, Z. A. S., Sahar, M. R., Ghoshal, S. K. J. Mol. Struct. 2014, 1072, 238. https://doi.org/10.1016/j.molstruc.2014.05.017.Search in Google Scholar
7. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H. Radiat. Phys. Chem. 2004, 71, 653. https://doi.org/10.1016/j.radphyschem.2004.04.040.Search in Google Scholar
8. Bagheri, R., Moghaddam, A. K., Yousefnia, H. Nucl. Eng. Technol. 2016, 49, 216–223. https://doi.org/10.1016/j.net.2016.08.013.Search in Google Scholar
9. El-Mallawany, R. Tellurite Glasses Handbook; CRC Press Inc.: Boca Raton, 2002.Search in Google Scholar
10. Mahraz, Z., Sahar, M., Ghoshal, S., Dousti, M. J. Lumin. 2013, 144, 139. https://doi.org/10.1016/j.jlumin.2013.06.050.Search in Google Scholar
11. Judd, B. R. Phys. Rev. 1962, 127, 750. https://doi.org/10.1103/PhysRev.127.750.Search in Google Scholar
12. Ofelt, G. S. J. Chem. Phys. 1962, 37, 511. https://doi.org/10.1063/1.1701366.Search in Google Scholar
13. Marzouk, S. Y., Azooz, M. A., El Batal, H. A. J. Mol. Struct. 2021, 1243, 130925. https://doi.org/10.1016/j.molstruc.2021.130925.Search in Google Scholar
14. Shojiya, M., Takahashi, M., Kanno, R., Kawamoto, Y., Kadono, K. J. Appl. Phys. 1997, 82, 6259. https://doi.org/10.1063/1.366545.Search in Google Scholar
15. Eraiah, B. Bull. Mater. Sci. 2006, 29, 375. https://doi.org/10.1007/BF02704138.Search in Google Scholar
16. Prabhu, N. S., Hegde, V., Sayyed, M. I., Agar, O., Kamath, S. D. Mater. Chem. Phys. 2019, 230, 267. https://doi.org/10.1016/j.matchemphys.2019.03.074.Search in Google Scholar
17. Dong, M. G., El-Mallawany, R., Sayyed, M. I., Tekin, H. O. Radiat. Phys. Chem. 2017, 141, 172. https://doi.org/10.1016/j.radphyschem.2017.07.006.Search in Google Scholar
18. Abdul Aziz, S. H., El-Mallawany, R., Shawaliza Badaron, S., Mohamed Kamari, H., Amin Matori, K. Adv. Mater. Sci. Eng. 2015, 2015, 1–5. https://doi.org/10.1155/2015/628954.Search in Google Scholar
19. Clabel, H. J. L., Lozano, G., Marega, E.Jr, Rivera, V. A. G. J. Non-Cryst. Solids 2021, 553, 120520. https://doi.org/10.1016/j.jnoncrysol.2020.120520.Search in Google Scholar
20. Azlan, M., Halimah, M., Sidek, H. J. Lumin. 2017, 181, 400. https://doi.org/10.1016/j.jlumin.2016.09.047.Search in Google Scholar
21. Awang, A., Ghoshal, S. K., Sahar, M. R., Dousti, M. R., Amjad, R. J., Nawaz, F. Curr. Appl. Phys. 2013, 13, 1813. https://doi.org/10.1016/j.cap.2013.06.025.Search in Google Scholar
22. Yusof, N. N., Ghoshal, S. K., Azlan, M. N. J. Alloys Compd. 2017, 724, 1083. https://doi.org/10.1016/j.jallcom.2017.07.102.Search in Google Scholar
23. Bilir, G., Kaya, A., Cinkaya, H., Eryürek, G. Spectrochim. Acta, Part A 2016, 165, 183. https://doi.org/10.1016/j.saa.2016.04.042.Search in Google Scholar PubMed
24. Reddy, B., Hwang, H., Jho, Y., Ham, B., Sailaja, S. Ceram. Int. 2015, 41, 3684. https://doi.org/10.1016/j.ceramint.2014.11.040.Search in Google Scholar
25. Jaba, N., Mansour, H., Kanoun, A., Brenier, A., Champagnon, B. J. Lumin. 2009, 129, 270. https://doi.org/10.1016/j.jlumin.2008.10.006.Search in Google Scholar
26. Hamza, A. M., Halimah, M. K., Muhammad, F. D., Chan, K. T. J. Lumin. 2019, 207, 497. https://doi.org/10.1016/j.jlumin.2018.11.038.Search in Google Scholar
27. Azlan, M. N., Shafinas, S. Z., Halimah, M. K., Suriani, A. B. J. Mater. Sci.: Mater. Electron. 2019, 30, 18015–18024. https://doi.org/10.1007/s10854-019-02155-6.Search in Google Scholar
28. Bashter, I. I. Ann. Nucl. Energy 1997, 24, 1389. https://doi.org/10.1016/S0306-4549(97)00003-0.Search in Google Scholar
29. Limkitjaroenporn, P., Kaewkhao, J., Limsuwan, P., Chewpraditkul, W. J. Phys. Chem. Solids 2011, 72, 245. https://doi.org/10.1016/j.jpcs.2011.01.007.Search in Google Scholar
30. Tijani, S. A., Kamal, S. M., Al-Hadeethi, Y., Arib, M., Hussein, M. A., Wageh, S., Dim, L. A. J. Alloys Compd. 2018, 741, 293. https://doi.org/10.1016/j.jallcom.2018.01.109.Search in Google Scholar
31. Issa, S. A. M., Tekin, H. O., Erguzel, T. T., Susoy, G. Appl. Phys. A 2019, 125, 640. https://doi.org/10.1007/s00339-019-2941-x.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Fabrication of magnetically separable Ag–ZnFe2O4 hollow nanospheres with efficient photocatalytic activity
- Optimization of magnetic properties of MnFe2O4 by modulating molarity of NaOH as precipitating agent
- Effect of synthesis method on structural and magnetic properties of La0.7Ca0.2Ba0.1MnO3
- Exploring the functional abilities of PVA–combeite composites as potential candidates for bone substitutes
- Study of optical, structural and radiation shielding properties of (55 − x)TeO2–20ZnO–25B2O3–xEr2O3 glass matrix
- Effect of post-weld heat treatment on corrosion resistance of X90 pipeline steel joints
- Microstructure and residual stress distribution of electron beam-welded joints of a 50 mm-thick TA15 titanium alloy plate
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Fabrication of magnetically separable Ag–ZnFe2O4 hollow nanospheres with efficient photocatalytic activity
- Optimization of magnetic properties of MnFe2O4 by modulating molarity of NaOH as precipitating agent
- Effect of synthesis method on structural and magnetic properties of La0.7Ca0.2Ba0.1MnO3
- Exploring the functional abilities of PVA–combeite composites as potential candidates for bone substitutes
- Study of optical, structural and radiation shielding properties of (55 − x)TeO2–20ZnO–25B2O3–xEr2O3 glass matrix
- Effect of post-weld heat treatment on corrosion resistance of X90 pipeline steel joints
- Microstructure and residual stress distribution of electron beam-welded joints of a 50 mm-thick TA15 titanium alloy plate
- News
- DGM – Deutsche Gesellschaft für Materialkunde