Startseite Technik Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy

  • Fuwei Kang , Enhao Wang ORCID logo EMAIL logo , Chun Tian , Wei Jiang , Pei Xu und Jinlong Lu
Veröffentlicht/Copyright: 30. Juni 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Four groups of 5182, 5182-0.4 % Sc, 5182-0.1 % Sc-0.3 % Zr and 5182-0.3 % Sc-0.1 % Zr (wt.%) aluminium alloys were prepared. The microstructures of these alloys were examined using optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results showed that the addition of Sc leads to the effect of grain refinement, and adding both Sc and Zr makes this phenomenon even more obvious. The morphology and distribution of the second phase changed. The addition of Sc makes the tensile strength increase and the elongation decrease. Adding both Sc and Zr significantly improves the mechanical properties of the alloy. The tensile strength of 5182-0.3 % Sc-0.1 % Zr alloy reaches a maximum value of 223 MPa, and the Brinell hardness of the alloy reaches a maximum value of 88.7 HBW.


Corresponding author: Enhao Wang, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Linyuan Road No. 4, Harbin 150040, Harbin, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by The National Natural Science Foundation of China (Grant numbers 51901058), Major science and technology projects of ``millions'' project in Heilongjiang Province (Grant numbers 2020ZX03A03) and The Natural Science Foundation of Heilongjiang Province, China (Grant No.LH2020E084).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Tang, J., Huang, X., Zhang, X. J Cent South Univ. 2012, 19, 2073. https://doi.org/10.1007/s11771-012-1247-3.Suche in Google Scholar

2. Kim, B. H., Lee, J. Y., Yoon, Y. O., Kim, S. K. Mater. Sci. Forum 2016, 877, 334. https://doi.org/10.4028/www.scientific.net/MSF.877.334.Suche in Google Scholar

3. Kang, F., Wei, S., Hu, W., Wang, E. Mater. Res. Express 2019, 6, 1165c3. https://doi.org/10.1088/2053-1591/ab4d73.Suche in Google Scholar

4. Kang, F., Wei, S., Wang, E., Wang, S., Sun, J., Cao, F., Liu, N. Mater. Res. Express 2019, 6, 126559. https://doi.org/10.1088/2053-1591/ab57aa.Suche in Google Scholar

5. Yao, D., Xia, Y., Qiu, F., Jiang, Q. Mater. Sci. Eng. 2011, 528, 1463–1466. https://doi.org/10.1016/j.msea.2010.10.046.Suche in Google Scholar

6. Du, Y., Wen, M., Ji, H., Li, M., Liu, Z. J. Mater. Sci. 2019, 30, 12840–12850. https://doi.org/10.1007/s10854-019-01729-8.Suche in Google Scholar

7. Musin, F., Kaibyshev, R., Motohashi, Y., Itohc, G. Scripta Mater. 2004, 50, 511. https://doi.org/10.1016/j.scriptamat.2003.10.021.Suche in Google Scholar

8. Marquis, E. A., Seidman, D. N., Asta, M., Woodward, C. Acta Mater. 2006, 54, 119. https://doi.org/10.1016/j.actamat.2005.08.035.Suche in Google Scholar

9. Wu, Y.-L., Li, C., (Sam) Froes, F. H., Alvarez, A. Metall. Mater. Trans. 1999, 30, 1017. https://doi.org/10.1007/s11661-999-0154-1.Suche in Google Scholar

10. Lathabai, S., Lloyd, P. G. Acta Mater. 2002, 50, 4275. https://doi.org/10.1016/S1359-6454(02)00259-8.Suche in Google Scholar

11. Knipling, K. E., Dunand, D. C., Seidman, D. N. Acta Mater. 2008, 56, 1182. https://doi.org/10.1016/j.actamat.2007.11.011.Suche in Google Scholar

12. Samuel, F. H., Samuel, A. M., Doty, H. W., Valtierra, S. Metall. Mater. Trans. 2001, 32, 2061. https://doi.org/10.1007/s11661-001-0018-9.Suche in Google Scholar

13. Nie, Z., Li, B. L., Wang, W., Jin, T. N., Huang, H., Li, H. M., Zou, J. X. Mater. Sci. Forum 2007, 546–549, 623. https://doi.org/10.4028/www.scientific.net/MSF.546-549.623.Suche in Google Scholar

14. Wen, S. P., Xing, Z. B., Huang, H., Li, B. L., Wang, W., Nie, Z. R. Mater. Sci. Eng., A 2009, 516, 42. https://doi.org/10.1016/j.msea.2009.02.045.Suche in Google Scholar

15. Zhang, Y. H., Miao, X. C., Shen, Z. Y., Han, Q. Y., Song, C. J., Zhai, Q. J. Acta Mater. 2015, 97, 357. https://doi.org/10.1016/j.actamat.2015.07.002.Suche in Google Scholar

16. Yin, Z., Pan, Q., Zhang, Y., Jiang, F. Mater. Sci. Eng., A 2000, 280, 151. https://doi.org/10.1016/S0921-5093(99)00682-6.Suche in Google Scholar

17. Suwanpreecha, C., Toinin, J. P., Michi, R. A., Pandee, P., Dunand, D. C. Acta Mater. 2019, 164, 334. https://doi.org/10.1016/j.actamat.2018.10.059.Suche in Google Scholar

18. Sitdikov, O. S., Avtokratova, E. V., Mukhametdinova, O. E., Garipova, R. N., Markushev, M. V. Phys. Met. Metallogr. 2017, 118, 1215. https://doi.org/10.1134/S0031918X17120122.Suche in Google Scholar

19. Yan, K., Chen, Z. W., Zhao, Y. N., Ren, C. C., Lu, W. J., Aldeen, A. W. J. Alloys Compd. 2021, 861, 158491. https://doi.org/10.1016/j.jallcom.2020.158491.Suche in Google Scholar

20. Samuel, A. M., Alkahtani, S. A., Doty, H. W., Samuel, F. H. Mater. Des. 2015, 88, 1134. https://doi.org/10.1016/j.matdes.2015.09.090.Suche in Google Scholar

21. Tsivoulas, D., Robson, J. D. Acta Mater. 2015, 93, 73. https://doi.org/10.1016/j.actamat.2015.03.057.Suche in Google Scholar

Received: 2021-10-04
Accepted: 2022-03-15
Published Online: 2022-06-30
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8587/html
Button zum nach oben scrollen