Abstract
Four groups of 5182, 5182-0.4 % Sc, 5182-0.1 % Sc-0.3 % Zr and 5182-0.3 % Sc-0.1 % Zr (wt.%) aluminium alloys were prepared. The microstructures of these alloys were examined using optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results showed that the addition of Sc leads to the effect of grain refinement, and adding both Sc and Zr makes this phenomenon even more obvious. The morphology and distribution of the second phase changed. The addition of Sc makes the tensile strength increase and the elongation decrease. Adding both Sc and Zr significantly improves the mechanical properties of the alloy. The tensile strength of 5182-0.3 % Sc-0.1 % Zr alloy reaches a maximum value of 223 MPa, and the Brinell hardness of the alloy reaches a maximum value of 88.7 HBW.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was funded by The National Natural Science Foundation of China (Grant numbers 51901058), Major science and technology projects of ``millions'' project in Heilongjiang Province (Grant numbers 2020ZX03A03) and The Natural Science Foundation of Heilongjiang Province, China (Grant No.LH2020E084).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Tang, J., Huang, X., Zhang, X. J Cent South Univ. 2012, 19, 2073. https://doi.org/10.1007/s11771-012-1247-3.Suche in Google Scholar
2. Kim, B. H., Lee, J. Y., Yoon, Y. O., Kim, S. K. Mater. Sci. Forum 2016, 877, 334. https://doi.org/10.4028/www.scientific.net/MSF.877.334.Suche in Google Scholar
3. Kang, F., Wei, S., Hu, W., Wang, E. Mater. Res. Express 2019, 6, 1165c3. https://doi.org/10.1088/2053-1591/ab4d73.Suche in Google Scholar
4. Kang, F., Wei, S., Wang, E., Wang, S., Sun, J., Cao, F., Liu, N. Mater. Res. Express 2019, 6, 126559. https://doi.org/10.1088/2053-1591/ab57aa.Suche in Google Scholar
5. Yao, D., Xia, Y., Qiu, F., Jiang, Q. Mater. Sci. Eng. 2011, 528, 1463–1466. https://doi.org/10.1016/j.msea.2010.10.046.Suche in Google Scholar
6. Du, Y., Wen, M., Ji, H., Li, M., Liu, Z. J. Mater. Sci. 2019, 30, 12840–12850. https://doi.org/10.1007/s10854-019-01729-8.Suche in Google Scholar
7. Musin, F., Kaibyshev, R., Motohashi, Y., Itohc, G. Scripta Mater. 2004, 50, 511. https://doi.org/10.1016/j.scriptamat.2003.10.021.Suche in Google Scholar
8. Marquis, E. A., Seidman, D. N., Asta, M., Woodward, C. Acta Mater. 2006, 54, 119. https://doi.org/10.1016/j.actamat.2005.08.035.Suche in Google Scholar
9. Wu, Y.-L., Li, C., (Sam) Froes, F. H., Alvarez, A. Metall. Mater. Trans. 1999, 30, 1017. https://doi.org/10.1007/s11661-999-0154-1.Suche in Google Scholar
10. Lathabai, S., Lloyd, P. G. Acta Mater. 2002, 50, 4275. https://doi.org/10.1016/S1359-6454(02)00259-8.Suche in Google Scholar
11. Knipling, K. E., Dunand, D. C., Seidman, D. N. Acta Mater. 2008, 56, 1182. https://doi.org/10.1016/j.actamat.2007.11.011.Suche in Google Scholar
12. Samuel, F. H., Samuel, A. M., Doty, H. W., Valtierra, S. Metall. Mater. Trans. 2001, 32, 2061. https://doi.org/10.1007/s11661-001-0018-9.Suche in Google Scholar
13. Nie, Z., Li, B. L., Wang, W., Jin, T. N., Huang, H., Li, H. M., Zou, J. X. Mater. Sci. Forum 2007, 546–549, 623. https://doi.org/10.4028/www.scientific.net/MSF.546-549.623.Suche in Google Scholar
14. Wen, S. P., Xing, Z. B., Huang, H., Li, B. L., Wang, W., Nie, Z. R. Mater. Sci. Eng., A 2009, 516, 42. https://doi.org/10.1016/j.msea.2009.02.045.Suche in Google Scholar
15. Zhang, Y. H., Miao, X. C., Shen, Z. Y., Han, Q. Y., Song, C. J., Zhai, Q. J. Acta Mater. 2015, 97, 357. https://doi.org/10.1016/j.actamat.2015.07.002.Suche in Google Scholar
16. Yin, Z., Pan, Q., Zhang, Y., Jiang, F. Mater. Sci. Eng., A 2000, 280, 151. https://doi.org/10.1016/S0921-5093(99)00682-6.Suche in Google Scholar
17. Suwanpreecha, C., Toinin, J. P., Michi, R. A., Pandee, P., Dunand, D. C. Acta Mater. 2019, 164, 334. https://doi.org/10.1016/j.actamat.2018.10.059.Suche in Google Scholar
18. Sitdikov, O. S., Avtokratova, E. V., Mukhametdinova, O. E., Garipova, R. N., Markushev, M. V. Phys. Met. Metallogr. 2017, 118, 1215. https://doi.org/10.1134/S0031918X17120122.Suche in Google Scholar
19. Yan, K., Chen, Z. W., Zhao, Y. N., Ren, C. C., Lu, W. J., Aldeen, A. W. J. Alloys Compd. 2021, 861, 158491. https://doi.org/10.1016/j.jallcom.2020.158491.Suche in Google Scholar
20. Samuel, A. M., Alkahtani, S. A., Doty, H. W., Samuel, F. H. Mater. Des. 2015, 88, 1134. https://doi.org/10.1016/j.matdes.2015.09.090.Suche in Google Scholar
21. Tsivoulas, D., Robson, J. D. Acta Mater. 2015, 93, 73. https://doi.org/10.1016/j.actamat.2015.03.057.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration
- Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
- Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
- The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
- Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
- Microstructures and mechanical properties of AF1410 steel processed by vacuum electron beam welding with multiple beams
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration
- Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
- Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
- The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
- Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
- Microstructures and mechanical properties of AF1410 steel processed by vacuum electron beam welding with multiple beams
- News
- DGM – Deutsche Gesellschaft für Materialkunde