Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
Abstract
Ceramic coatings were prepared on 6061 aluminum alloy in electrolytes containing La2O3 particles using the micro-arc oxidation technique. The main work focuses on the microstructure, phase composition, elemental distribution and corrosion resistance of micro-arc oxidation coatings. The results showed that the addition of La2O3 increased the oxidation voltage and promoted the formation rate. Scanning electron microscopy observations indicated that the quantity of discharge micropores decreased and the thickness increased, and thus, the microhardness increased. The X-ray diffraction results showed that the coatings mainly consisted of γ-Al2O3, α-Al2O3 and SiO2. Electrochemical corrosion tests showed that the corrosion resistance of the coated sample with La2O3 increased greatly because the addition of La2O3 significantly reduced the micropores of the coating surface and made the coating thicker, smoother and harder. Hence, the addition of La2O3 can optimize the structure of the micro-arc oxidation coating and improve its corrosion resistance.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Wasekar, N. P., Jyothirmayi, A., Sundararajan, G. Int. J. Fatig. 2011, 33, 1268. https://doi.org/10.1016/j.ijfatigue.2011.03.016.Suche in Google Scholar
2. Wang, L. F., Sun, J., Zhu, X. G., Cheng, L. Y., Shi, Y., Guo, L. J., Yan, B. Materials 2018, 11, 66. https://doi.org/10.3390/ma11010066.Suche in Google Scholar PubMed PubMed Central
3. Paksoy, A. H., Muhaffel, F., Koca, M., Gokce, O., Mohammadzadeh, S., Cimenoglu, H. Mater. Tehnol. 2017, 51, 117. https://doi.org/10.17222/mit.2015.302.Suche in Google Scholar
4. Krauss, A. R., Dewald, A. B., Scott, P., Savage, H. Fusion Technol. 1991, 19, 913. https://doi.org/10.13182/FST91-A29461.Suche in Google Scholar
5. Xia, W. M., Li, N., Deng, B., Zheng, R. M., Chen, Y. Q. Ceram. Int. 2019, 45, 11062. https://doi.org/10.1016/j.ceramint.2019.02.192.Suche in Google Scholar
6. Wang, P., Wu, Y., Xiao, Y. T., Pu, J., Guo, X. G., Huang, J., Xiang, C. L. J. Mater. Eng. Perform. 2016, 25, 3972. https://doi.org/10.1007/s11665-016-2255-5.Suche in Google Scholar
7. Wang, J., Huang, S., He, M. Y., Wangyang, P. H., Lu, Y. F., Huang, H. J., Xu, L. Ceram. Int. 2018, 44, 7656. https://doi.org/10.1016/j.ceramint.2018.01.189.Suche in Google Scholar
8. Huang, H. J., Wei, X. W., Yang, J. X., Wang, J. Appl. Surf. Sci. 2016, 389, 1175. https://doi.org/10.1016/j.apsusc.2016.08.088.Suche in Google Scholar
9. Liu, J. A., Zhu, X. Y., Huang, Z. Q., Yu, S. R., Yang, X. Z. J. Coating Technol. Res. 2012, 9, 357. https://doi.org/10.1007/s11998-011-9377-3.Suche in Google Scholar
10. Wang, Y. P., Zeng, L. L., Zhang, H. H., Xiang, J. H., Zhang, S. F., Chang, W. H., Zhang, R. F., Wang, Q., Sheng, Y., Zhao, Y. Materials 2018, 11, 344. https://doi.org/10.3390/ma11030344.Suche in Google Scholar PubMed PubMed Central
11. Xu, J. L., Xiao, Q. F., Me, D. D., Tong, Y. X., Zheng, Y. F., Li, L. Surf. Coating. Technol. 2017, 309, 621. https://doi.org/10.1016/j.surfcoat.2016.12.023.Suche in Google Scholar
12. Krishna, L. R., Purnima, A. S., Wasekar, N. P., Sundararajan, G. Metall. Mater. Trans. A. 2008, 38, 370. https://doi.org/10.1007/s11661-006-9054-9.Suche in Google Scholar
13. Sundararajan, G., Wasekar, N. P., Ravi, N. Trans. Indian Inst. Met. 2010, 63, 203. https://doi.org/10.1007/s12666-010-0028-7.Suche in Google Scholar
14. Wasekar, N. P., Ravi, N., Babu, P. S., Krishna, L. R., Sundararajan, G. Metall. Mater. Trans. A. 2010, 41, 255. https://doi.org/10.1007/s11661-009-0057-1.Suche in Google Scholar
15. Krishna, L. R., Madhavi, Y., Sahithi, T., Wasekar, N. P., Chavan, N. M., Rao, D. S. Int. J. Fatig. 2018, 106, 165. https://doi.org/10.1016/j.ijfatigue.2017.09.020.Suche in Google Scholar
16. Gu, X., Jiang, B. L., Li, H. T., Liu, C. C., Shao, L. L. Mater. Res. Express 2018, 5, 056522. https://doi.org/10.1088/2053-1591/aac33a.Suche in Google Scholar
17. Lu, X. P., Blawert, C., Huang, Y. D., Ovri, H., Zheludkevich, M. L., Kainer, K. U. Electrochim. Acta 2016, 187, 20. https://doi.org/10.1016/j.electacta.2015.11.033.Suche in Google Scholar
18. Wang, P., Wu, T., Peng, H., Guo, X. Y. Mater. Lett. 2016, 170, 171. https://doi.org/10.1016/j.matlet.2016.02.024.Suche in Google Scholar
19. Wang, P., Gong, Z. Y., Hu, J., Pu, J., Cao, W. J. Surf. Eng. 2019, 35, 627. https://doi.org/10.1080/02670844.2018.1557996.Suche in Google Scholar
20. Wang, P., Wei, X. W., Pu, J., Xiong, D., Liu, J. W., Gong, Z. Y., Hu, J., Cao, W. J., Zu, X. T. Int. J. Electrochem. Sci. 2019, 14, 5161. https://doi.org/10.20964/2019.06.60.Suche in Google Scholar
21. Wang, P., Wu, T., Xiao, Y. T., Pu, J., Guo, X. Y. Mater. Lett. 2016, 182, 27. https://doi.org/10.1016/j.matlet.2016.06.070.Suche in Google Scholar
22. Ranjbar, M., Yousef, M. J. Inorg. Organomet. Polym. Mater. 2014, 24, 652. https://doi.org/10.1007/s10904-014-0019-y.Suche in Google Scholar
23. Ozawa, M., Araki, K. Surf. Coating. Technol. 2015, 271, 80. https://doi.org/10.1016/j.surfcoat.2015.01.010.Suche in Google Scholar
24. Lee, C. C., Lin, P. J. Mater. Sci. Mater. Electron. 1998, 9, 409. https://doi.org/10.1023/A:1008969102414.Suche in Google Scholar
25. Yasuoka, M., Hirao, K., Brito, M. E., Kanzaki, S. J. Am. Ceram. Soc. 1995, 78, 1853. https://doi.org/10.1111/j.1151-2916.1995.tb08899.x.Suche in Google Scholar
26. Wang, P., Wu, T., Xiao, Y. T., Zhang, L., Pu, J., Cao, W. J., Zhong, X. M. Vacuum 2017, 142, 21. https://doi.org/10.1016/j.vacuum.2017.04.038.Suche in Google Scholar
27. Sunding, M. F., Hadidi, K., Diplas, S., Løvvik, O. M., Norby, T. E., Gunnæs, A. E. J. Electron. Spectrosc. Relat. Phenom. 2011, 184, 399. https://doi.org/10.1016/j.elspec.2011.04.002.Suche in Google Scholar
28. Jerry, P. H. L., Zhou, X., Pang, Y., Zhu, L., Vovk, E. I., Cong, L., van Bavel, A. P., Li, S., Yang, Y. Phys. Chem. Chem. Phys. 2019, 21, 22351. https://doi.org/10.1039/c9cp04187g.Suche in Google Scholar
29. Liu, W. Y., Liu, Y., Lin, Y. H., Zhang, Z., Feng, S. B., Talha, M., Shi, Y. S., Shi, T. H. Appl. Surf. Sci. 2019, 475, 645. https://doi.org/10.1016/j.apsusc.2018.12.233.Suche in Google Scholar
30. Murr, L. E., Inal, O. T. Thin Solid Films 1979, 64, 77. https://doi.org/10.1016/0040-6090(79)90547-9.Suche in Google Scholar
31. Gnedenkov, A. S., Sinebryukhov, S. L., Mashtalyar, D. V., Gnedenkov, S. V. Corrosion Sci. 2016, 102, 348. https://doi.org/10.1016/j.corsci.2015.10.026.Suche in Google Scholar
32. Zeng, R. C., Zhang, F., Lan, Z. D., Cui, H. Z., Han, E. H. Corrosion Sci. 2014, 88, 452. https://doi.org/10.1016/j.corsci.2014.08.007.Suche in Google Scholar
33. Tang, H., Han, Y., Wu, T., Tao, W., Jian, X., Wu, Y. F., Xu, F. J. Appl. Surf. Sci. 2017, 400, 391. https://doi.org/10.1016/j.apsusc.2016.12.216.Suche in Google Scholar
34. Dehghanghadikolaei, A., Ibrahim, H., Amerinatanzi, A., Hashemi, M., Moghaddam, N. S., Elahinia, M. J. Mater. Sci. 2019, 54, 7333. https://doi.org/10.1007/s10853-019-03375-1.Suche in Google Scholar
35. Yu, C., Cui, L. Y., Zhou, Y. F., Han, Z. Z., Chen, X. B., Zeng, R. C., Zou, Y. H., Li, S. Q., Zhang, F., Han, E. H. Surf. Coating. Technol. 2018, 344, 1. https://doi.org/10.1016/j.surfcoat.2018.03.007.Suche in Google Scholar
36. Wang, P., Pu, J., Xiao, Y. T., Hu, W. J., Wu, T., Cao, W. J., Gong, Z. Y., Huang, M. Surf. Rev. Lett. 2019, 26, 1850178. https://doi.org/10.1142/S0218625X18501780.Suche in Google Scholar
37. Huang, D., Zhang, X. Y., Wu, D. F., Zhou, X. S. Adv. Mater. Res. 2013, 850–851, 140. https://doi.org/10.4028/www.scientific.net/AMR.850-851.140.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration
- Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
- Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
- The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
- Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
- Microstructures and mechanical properties of AF1410 steel processed by vacuum electron beam welding with multiple beams
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Modulated dilatometry as a tool for simultaneous study of vacancy formation and migration
- Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
- Effect of trace Sc and Zr on microstructure and properties of as-cast 5182 aluminum alloy
- The recrystallization-assisted reduction in mechanical anisotropy of Al–Zn–Mg–Cu–Zr–Mn alloys
- Wear behavior and microstructural transformation of single fcc phase AlCoCrFeNi high-entropy alloy at elevated temperatures
- Microstructures and mechanical properties of AF1410 steel processed by vacuum electron beam welding with multiple beams
- News
- DGM – Deutsche Gesellschaft für Materialkunde