Startseite Technik Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Improving structure and corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with the addition of La2O3

  • Biao Yang , Ping Wang ORCID logo EMAIL logo , Jie Hu , Yunbai Gong , Jiwei Liu , Zeyu Gong , Dan Xiong und Dong Xiang
Veröffentlicht/Copyright: 30. Juni 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ceramic coatings were prepared on 6061 aluminum alloy in electrolytes containing La2O3 particles using the micro-arc oxidation technique. The main work focuses on the microstructure, phase composition, elemental distribution and corrosion resistance of micro-arc oxidation coatings. The results showed that the addition of La2O3 increased the oxidation voltage and promoted the formation rate. Scanning electron microscopy observations indicated that the quantity of discharge micropores decreased and the thickness increased, and thus, the microhardness increased. The X-ray diffraction results showed that the coatings mainly consisted of γ-Al2O3, α-Al2O3 and SiO2. Electrochemical corrosion tests showed that the corrosion resistance of the coated sample with La2O3 increased greatly because the addition of La2O3 significantly reduced the micropores of the coating surface and made the coating thicker, smoother and harder. Hence, the addition of La2O3 can optimize the structure of the micro-arc oxidation coating and improve its corrosion resistance.


Corresponding author: Ping Wang, School of New Energy and Materials, Southwest Petroleum University, Chengdu, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Wasekar, N. P., Jyothirmayi, A., Sundararajan, G. Int. J. Fatig. 2011, 33, 1268. https://doi.org/10.1016/j.ijfatigue.2011.03.016.Suche in Google Scholar

2. Wang, L. F., Sun, J., Zhu, X. G., Cheng, L. Y., Shi, Y., Guo, L. J., Yan, B. Materials 2018, 11, 66. https://doi.org/10.3390/ma11010066.Suche in Google Scholar PubMed PubMed Central

3. Paksoy, A. H., Muhaffel, F., Koca, M., Gokce, O., Mohammadzadeh, S., Cimenoglu, H. Mater. Tehnol. 2017, 51, 117. https://doi.org/10.17222/mit.2015.302.Suche in Google Scholar

4. Krauss, A. R., Dewald, A. B., Scott, P., Savage, H. Fusion Technol. 1991, 19, 913. https://doi.org/10.13182/FST91-A29461.Suche in Google Scholar

5. Xia, W. M., Li, N., Deng, B., Zheng, R. M., Chen, Y. Q. Ceram. Int. 2019, 45, 11062. https://doi.org/10.1016/j.ceramint.2019.02.192.Suche in Google Scholar

6. Wang, P., Wu, Y., Xiao, Y. T., Pu, J., Guo, X. G., Huang, J., Xiang, C. L. J. Mater. Eng. Perform. 2016, 25, 3972. https://doi.org/10.1007/s11665-016-2255-5.Suche in Google Scholar

7. Wang, J., Huang, S., He, M. Y., Wangyang, P. H., Lu, Y. F., Huang, H. J., Xu, L. Ceram. Int. 2018, 44, 7656. https://doi.org/10.1016/j.ceramint.2018.01.189.Suche in Google Scholar

8. Huang, H. J., Wei, X. W., Yang, J. X., Wang, J. Appl. Surf. Sci. 2016, 389, 1175. https://doi.org/10.1016/j.apsusc.2016.08.088.Suche in Google Scholar

9. Liu, J. A., Zhu, X. Y., Huang, Z. Q., Yu, S. R., Yang, X. Z. J. Coating Technol. Res. 2012, 9, 357. https://doi.org/10.1007/s11998-011-9377-3.Suche in Google Scholar

10. Wang, Y. P., Zeng, L. L., Zhang, H. H., Xiang, J. H., Zhang, S. F., Chang, W. H., Zhang, R. F., Wang, Q., Sheng, Y., Zhao, Y. Materials 2018, 11, 344. https://doi.org/10.3390/ma11030344.Suche in Google Scholar PubMed PubMed Central

11. Xu, J. L., Xiao, Q. F., Me, D. D., Tong, Y. X., Zheng, Y. F., Li, L. Surf. Coating. Technol. 2017, 309, 621. https://doi.org/10.1016/j.surfcoat.2016.12.023.Suche in Google Scholar

12. Krishna, L. R., Purnima, A. S., Wasekar, N. P., Sundararajan, G. Metall. Mater. Trans. A. 2008, 38, 370. https://doi.org/10.1007/s11661-006-9054-9.Suche in Google Scholar

13. Sundararajan, G., Wasekar, N. P., Ravi, N. Trans. Indian Inst. Met. 2010, 63, 203. https://doi.org/10.1007/s12666-010-0028-7.Suche in Google Scholar

14. Wasekar, N. P., Ravi, N., Babu, P. S., Krishna, L. R., Sundararajan, G. Metall. Mater. Trans. A. 2010, 41, 255. https://doi.org/10.1007/s11661-009-0057-1.Suche in Google Scholar

15. Krishna, L. R., Madhavi, Y., Sahithi, T., Wasekar, N. P., Chavan, N. M., Rao, D. S. Int. J. Fatig. 2018, 106, 165. https://doi.org/10.1016/j.ijfatigue.2017.09.020.Suche in Google Scholar

16. Gu, X., Jiang, B. L., Li, H. T., Liu, C. C., Shao, L. L. Mater. Res. Express 2018, 5, 056522. https://doi.org/10.1088/2053-1591/aac33a.Suche in Google Scholar

17. Lu, X. P., Blawert, C., Huang, Y. D., Ovri, H., Zheludkevich, M. L., Kainer, K. U. Electrochim. Acta 2016, 187, 20. https://doi.org/10.1016/j.electacta.2015.11.033.Suche in Google Scholar

18. Wang, P., Wu, T., Peng, H., Guo, X. Y. Mater. Lett. 2016, 170, 171. https://doi.org/10.1016/j.matlet.2016.02.024.Suche in Google Scholar

19. Wang, P., Gong, Z. Y., Hu, J., Pu, J., Cao, W. J. Surf. Eng. 2019, 35, 627. https://doi.org/10.1080/02670844.2018.1557996.Suche in Google Scholar

20. Wang, P., Wei, X. W., Pu, J., Xiong, D., Liu, J. W., Gong, Z. Y., Hu, J., Cao, W. J., Zu, X. T. Int. J. Electrochem. Sci. 2019, 14, 5161. https://doi.org/10.20964/2019.06.60.Suche in Google Scholar

21. Wang, P., Wu, T., Xiao, Y. T., Pu, J., Guo, X. Y. Mater. Lett. 2016, 182, 27. https://doi.org/10.1016/j.matlet.2016.06.070.Suche in Google Scholar

22. Ranjbar, M., Yousef, M. J. Inorg. Organomet. Polym. Mater. 2014, 24, 652. https://doi.org/10.1007/s10904-014-0019-y.Suche in Google Scholar

23. Ozawa, M., Araki, K. Surf. Coating. Technol. 2015, 271, 80. https://doi.org/10.1016/j.surfcoat.2015.01.010.Suche in Google Scholar

24. Lee, C. C., Lin, P. J. Mater. Sci. Mater. Electron. 1998, 9, 409. https://doi.org/10.1023/A:1008969102414.Suche in Google Scholar

25. Yasuoka, M., Hirao, K., Brito, M. E., Kanzaki, S. J. Am. Ceram. Soc. 1995, 78, 1853. https://doi.org/10.1111/j.1151-2916.1995.tb08899.x.Suche in Google Scholar

26. Wang, P., Wu, T., Xiao, Y. T., Zhang, L., Pu, J., Cao, W. J., Zhong, X. M. Vacuum 2017, 142, 21. https://doi.org/10.1016/j.vacuum.2017.04.038.Suche in Google Scholar

27. Sunding, M. F., Hadidi, K., Diplas, S., Løvvik, O. M., Norby, T. E., Gunnæs, A. E. J. Electron. Spectrosc. Relat. Phenom. 2011, 184, 399. https://doi.org/10.1016/j.elspec.2011.04.002.Suche in Google Scholar

28. Jerry, P. H. L., Zhou, X., Pang, Y., Zhu, L., Vovk, E. I., Cong, L., van Bavel, A. P., Li, S., Yang, Y. Phys. Chem. Chem. Phys. 2019, 21, 22351. https://doi.org/10.1039/c9cp04187g.Suche in Google Scholar

29. Liu, W. Y., Liu, Y., Lin, Y. H., Zhang, Z., Feng, S. B., Talha, M., Shi, Y. S., Shi, T. H. Appl. Surf. Sci. 2019, 475, 645. https://doi.org/10.1016/j.apsusc.2018.12.233.Suche in Google Scholar

30. Murr, L. E., Inal, O. T. Thin Solid Films 1979, 64, 77. https://doi.org/10.1016/0040-6090(79)90547-9.Suche in Google Scholar

31. Gnedenkov, A. S., Sinebryukhov, S. L., Mashtalyar, D. V., Gnedenkov, S. V. Corrosion Sci. 2016, 102, 348. https://doi.org/10.1016/j.corsci.2015.10.026.Suche in Google Scholar

32. Zeng, R. C., Zhang, F., Lan, Z. D., Cui, H. Z., Han, E. H. Corrosion Sci. 2014, 88, 452. https://doi.org/10.1016/j.corsci.2014.08.007.Suche in Google Scholar

33. Tang, H., Han, Y., Wu, T., Tao, W., Jian, X., Wu, Y. F., Xu, F. J. Appl. Surf. Sci. 2017, 400, 391. https://doi.org/10.1016/j.apsusc.2016.12.216.Suche in Google Scholar

34. Dehghanghadikolaei, A., Ibrahim, H., Amerinatanzi, A., Hashemi, M., Moghaddam, N. S., Elahinia, M. J. Mater. Sci. 2019, 54, 7333. https://doi.org/10.1007/s10853-019-03375-1.Suche in Google Scholar

35. Yu, C., Cui, L. Y., Zhou, Y. F., Han, Z. Z., Chen, X. B., Zeng, R. C., Zou, Y. H., Li, S. Q., Zhang, F., Han, E. H. Surf. Coating. Technol. 2018, 344, 1. https://doi.org/10.1016/j.surfcoat.2018.03.007.Suche in Google Scholar

36. Wang, P., Pu, J., Xiao, Y. T., Hu, W. J., Wu, T., Cao, W. J., Gong, Z. Y., Huang, M. Surf. Rev. Lett. 2019, 26, 1850178. https://doi.org/10.1142/S0218625X18501780.Suche in Google Scholar

37. Huang, D., Zhang, X. Y., Wu, D. F., Zhou, X. S. Adv. Mater. Res. 2013, 850–851, 140. https://doi.org/10.4028/www.scientific.net/AMR.850-851.140.Suche in Google Scholar

Received: 2021-03-07
Revised: 2022-05-22
Accepted: 2022-03-09
Published Online: 2022-06-30
Published in Print: 2022-08-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8272/html
Button zum nach oben scrollen