Startseite Heat Transfer Enhancement Around a Cylinder – A CFD Study of Effect of Corner Radius and Prandtl Number
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Heat Transfer Enhancement Around a Cylinder – A CFD Study of Effect of Corner Radius and Prandtl Number

  • Prasenjit Dey EMAIL logo und Ajoy Kumar Das
Veröffentlicht/Copyright: 2. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An unsteady two-dimensional laminar forced convection heat transfer around a square cylinder with rounded corner edge is numerically investigated for Prandtl Number, Pr=0.01–1,000 and non-dimensional corner radius, r=0.50–0.71 at low Reynolds number, Re=100. The effect of gradual transformation of square cylinder into circular cylinder on heat transfer phenomenon is studied. The lateral sides of the computational domain are kept constant to maintain the blockage as 5 %. A structured non-uniform mesh is used for the computational domain and the Finite Volume Method (FVM) based commercial software Ansys FLUENT is used for numerical simulation. The heat transfer characteristics over the rounded corner square cylinder are analyzed with the isotherm patterns, local Nusselt number (Nulocal), average Nusselt number (Nuavg) at various Pr and various corner radii. It is found that the heat transfer rate of a circular cylinder can be enhanced 14 % by introducing a new cylinder geometry of corner radius, r=0. 51.

References

1. Bhattacharyya S., Mahapatra S., 2005. Vortex shedding around a heated square cylinder under the influence of buoyancy. Heat and Mass Transfer 41, 824–833.10.1007/s00231-005-0626-9Suche in Google Scholar

2. Breuer M., Bernsdorf J., Zeiser T., Durst F., 2000. Accurate computations of the laminar flow past a square cylinder based on two different methods: Lattice-Boltzmann and finite-volume. International Journal of Heat and Fluid Flow 21, 186–196.10.1016/S0142-727X(99)00081-8Suche in Google Scholar

3. Carassale L., Freda A., Marrè-Brunenghi M., 2013. Effects of free-stream turbulence and corner shape on the galloping instability of square cylinders. Journal of Wind Engineering and Industrial Aerodynamics 123, 274–280.10.1016/j.jweia.2013.09.002Suche in Google Scholar

4. Carassale L., Freda A., Marrè-Brunenghi M., 2014. Experimental investigation on the aerodynamic behaviour of square cylinders with rounded corners. Journal of Fluids and Structures 44, 195–204.10.1016/j.jfluidstructs.2013.10.010Suche in Google Scholar

5. Chakraborty J., Verma N., Chhabra R., 2004. Wall effects in flow past a circular cylinder in a plane channel: a numerical study. Chemical Engineering and Processing: Process Intensification 43, 1529–1537.10.1016/j.cep.2004.02.004Suche in Google Scholar

6. Chhabra R., Soares A., Ferreira J., 2004. Steady non–Newtonian flow past a circular cylinder: A numerical study. Acta Mechanica 172, 1–16.10.1007/s00707-004-0154-6Suche in Google Scholar

7. Dey, P., Das A., 2015. Numerical analysis of drag and lift reduction of square cylinder. Engineering Science and Technology, an International Journal 18, 758–768.10.1016/j.jestch.2015.05.007Suche in Google Scholar

8. Dey, P., Das A., 2015. Steady flow over triangular extended solid attached with square cylinder-A method to reduce drag. Ain Shams Engineering Journal 6, 929–938.10.1016/j.asej.2015.01.002Suche in Google Scholar

9. Dey, P., et al. 2015. Prediction of unsteady mixed convection over circular cylinder in the presence of nanofluid- A comparative study of ANN and GEP. Journal of Naval Architecture and Marine Engineering 12, 57–71.10.3329/jname.v12i1.21812Suche in Google Scholar

10. Dhiman A., Chhabra R., Eswaran V., 2005. Flow and heat transfer across a confined square cylinder in the steady flow regime: Effect of Peclet number. International Journal of Heat and Mass Transfer 48, 4598–4614.10.1016/j.ijheatmasstransfer.2005.04.033Suche in Google Scholar

11. Dhiman A., Chhabra R., Sharma A., Eswaran V., 2006. Effects of Reynolds and Prandtl numbers on heat transfer across a square cylinder in the steady flow regime. Numerical Heat Transfer, Part A: Applications 49, 717–731.10.1080/10407780500283325Suche in Google Scholar

12. Fluent I., 2006. FLUENT 6.3 user’s guide. Fluent documentation.Suche in Google Scholar

13. Golani R., Dhiman A., 2004. Fluid flow and heat transfer across a circular cylinder in the unsteady flow regime.Suche in Google Scholar

14. Gupta A.K., Sharma A., Chhabra R.P., Eswaran V., 2003. Two-dimensional steady flow of a power-law fluid past a square cylinder in a plane channel: momentum and heat-transfer characteristics. Industrial & Engineering Chemistry Research 42, 5674–5686.10.1021/ie030368fSuche in Google Scholar

15. Hu J., Zhou Y., Dalton C., 2006. Effects of the corner radius on the near wake of a square prism. Experiments in Fluids 40, 106–118.10.1007/s00348-005-0052-2Suche in Google Scholar

16. Ji T.H., Kim S.Y., Hyun J.M., 2008. Experiments on heat transfer enhancement from a heated square cylinder in a pulsating channel flow. International Journal of Heat and Mass Transfer 51, 1130–1138.10.1016/j.ijheatmasstransfer.2007.04.015Suche in Google Scholar

17. Leontini J.S., Thompson M.C., 2013. Vortex-induced vibrations of a diamond cross-section: Sensitivity to corner sharpness. Journal of Fluids and Structures 39, 371–390.10.1016/j.jfluidstructs.2013.01.002Suche in Google Scholar

18. Mahír N., Altaç Z., 2008. Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements. International Journal of Heat and Fluid Flow 29, 1309–1318.10.1016/j.ijheatfluidflow.2008.05.001Suche in Google Scholar

19. Mandal A., Faruk G., 2010. An experimental investigation of static pressure distributions on a group of square or rectangular cylinders with rounded corners. Journal of Mechanical Engineering 41, 42–49.10.3329/jme.v41i1.5361Suche in Google Scholar

20. Park J., Kwon K., Choi H., 1998. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME International Journal 12, 1200–1205.10.1007/BF02942594Suche in Google Scholar

21. Parveez M., Dhiman A., Rasool T., 2014. Transition to periodic unsteady and effects of Prandtl and Richardson numbers on the flow across a confined heated trapezoidal prism. Journal of the Brazilian Society of Mechanical Sciences and Engineering 37, 1291–1307.10.1007/s40430-014-0258-4Suche in Google Scholar

22. Posdziech O., Grundmann R., 2007. A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder. Journal of Fluids and Structures 23, 479–499.10.1016/j.jfluidstructs.2006.09.004Suche in Google Scholar

23. Rahnama M., Hadi-Moghaddam H., 2005. Numerical investigation of convective heat transfer in unsteady laminar flow over a square cylinder in a channel. Heat transfer engineering 26, 21–29.10.1080/01457630500248521Suche in Google Scholar

24. Sahu A.K., Chhabra R., Eswaran V., 2009. Effects of Reynolds and Prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime. International Journal of Heat and Mass Transfer 52, 839–850.10.1016/j.ijheatmasstransfer.2008.07.032Suche in Google Scholar

25. Sarkar S., Dalal A., Biswas G., 2011. Unsteady wake dynamics and heat transfer in forced and mixed convection past a circular cylinder in cross flow for high Prandtl numbers. International Journal of Heat and Mass Transfer 54, 3536–3551.10.1016/j.ijheatmasstransfer.2011.03.032Suche in Google Scholar

26. Sharma A., Eswaran V., 2004a. Effect of aiding and opposing buoyancy on the heat and fluid flow across a square cylinder at Re=100. Numerical Heat Transfer, Part A: Applications 45, 601–624.10.1080/10407780490277798Suche in Google Scholar

27. Sharma A., Eswaran V., 2004b. Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime. Numerical Heat Transfer, Part A: Applications 45, 247–269.10.1080/10407780490278562Suche in Google Scholar

28. Sheard G.J., Fitzgerald M.J., Ryan K., 2009. Cylinders with square cross-section: wake instabilities with incidence angle variation. Journal of Fluid Mechanics 630, 43–69.10.1017/S0022112009006879Suche in Google Scholar

29. Shi J.-M., Gerlach D., Breuer M., Biswas G., Durst F., 2004. Heating effect on steady and unsteady horizontal laminar flow of air past a circular cylinder. Physics of Fluids (1994-present) 16, 4331–4345.10.1063/1.1804547Suche in Google Scholar

30. Sohankar A., Norberg C., Davidson L., 1998. Low Reynolds number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. International Journal for Numerical Methods in Fluids 26, 39–56.10.1002/(SICI)1097-0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-PSuche in Google Scholar

31. Sohankar A.L.D., Norberg C., 1995. Numerical simulation of unsteady flow around a square two-dimensional cylinder Proceedings of the 12th Australian Fluid Mechanics Conference: 517–520.Suche in Google Scholar

32. Tamura T., Miyagi T., 1999. The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes. Journal of Wind Engineering and Industrial Aerodynamics 83, 135–145.10.1016/S0167-6105(99)00067-7Suche in Google Scholar

33. Tritton D.J., 1959. Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics 6, 547–567.10.1017/S0022112059000829Suche in Google Scholar

34. Wei-Bin G, Neng-Chao W., Bao-Chang S., Zhao-Li G., 2003. Lattice-BGK simulation of a two-dimensional channel flow around a square cylinder. Chinese Physics 12, 67.10.1088/1009-1963/12/1/312Suche in Google Scholar

Published Online: 2016-3-2
Published in Print: 2016-4-1

©2016 by De Gruyter

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2015-0109/pdf
Button zum nach oben scrollen