Startseite Effect of L/D Ratio on Phase Holdup and Bubble Dynamics in Slurry Bubble Column using Optical Fiber Probe Measurements
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of L/D Ratio on Phase Holdup and Bubble Dynamics in Slurry Bubble Column using Optical Fiber Probe Measurements

  • Saba A. Gheni EMAIL logo , Yasser I. Abdulaziz und Muthanna H. Al-Dahhan
Veröffentlicht/Copyright: 20. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this investigation, time average local gas holdup and bubble dynamic data were achieved for three L/D ratios of slurry bubble column. The examined ratios were 3, 4 and 5 in 18″ diameter slurry bubble column. Air-water-glass bead system was used with superficial gas velocity up to 0.24 m/s. The gas holdup was measured using four tips optical fiber probe technique. The results showed that the gas holdup increases almost linearly with the superficial gas velocity in 0.08 m/s and levels off with a further increase of velocity. A comparison of the present data with those reported for other slurry bubble column having diameters greater than 18″ and L/D higher than 5 was made. The results indicated a little effect of diameter on the gas holdup. A local, section-averaged gas holdup increases with increasing superficial gas velocity, while the effect of solid loading are less significant than that of the superficial gas velocity. Chaos analysis was used to analyze the slurry system.

Award Identifier / Grant number: 18625

Funding statement: Chemical Security Program “18625”.

References

1. Baird, M.H., Rice, R.G., 1975. Axial Dispersion in Large Un-Baffled Columns. Chem. Eng. J. 9, 171–174.10.1016/0300-9467(75)80010-4Suche in Google Scholar

2. Bukur, D.B., Daly, J.G., 1987. Gas Holdup in Bubble Columns for Fischer Tropsch Synthesis. Chem. Eng. Sci. 42, 2967–296910.1016/0009-2509(87)87064-1Suche in Google Scholar

3. Darton, R.C., Harrision, D., 1975. Gas and Liquid Holdup in Three-Phase Fluidization. Chem. Eng. Sci. 30, 58110.1016/0009-2509(75)80030-3Suche in Google Scholar

4. Daw, C.S., Halow, J.S., 1991. Characterization of Voidage and Pressure Signals from Fluidized Beds Using Deterministic Chaos Theory, in: Anthony, E.J. (Ed.), Proceeding of the 11th International Conference on Fluidized Bed Combustion, 1, 777–786.Suche in Google Scholar

5. Daw, C.S., Lawkins, W.F., Downing, D.J., Clapp, N.E., 1990. Chaotic Characteristics of a Complex Gas Solid Flow. Phys. Rev. A. 41, 1179–1181.10.1103/PhysRevA.41.1179Suche in Google Scholar

6. Devanathan, N., Dudukovic, M., Lapin, P.A., Lubbert, A., 1995. Chaotic Flow in Bubble Column Reactors. Chem. Eng. Sci. 50, 2661–2667.10.1016/0009-2509(95)00070-LSuche in Google Scholar

7. De Swart, J.W.A., Krishna, R., 1995. Effect of Particles Concentration on the Hydrodynamics of Bubble Column Slurry Reactors, Chem. Eng. Res. Design, Trans. Ind. Chem. Eng. 73, 308.Suche in Google Scholar

8. Fan, L.-S., 1989. Gas–Liquid–Solid Fluidization Engineering, Butterworth, Stoneham, MA.Suche in Google Scholar

9. Fan, L.S., Matsuura, A., Chern, S.H., 1985. Hydrodynamic Characteristics of a Gas-Liquid-Solid Fluidized Bed Containing a Binary Mixture of Particles. AlChE J. 31, 180110.1002/aic.690311106Suche in Google Scholar

10. Fan, L.S., Satija, S., Wisecarver, K., 1986. Pressure Fluctuation Measurements and Flow Regime Transitions in Gas-Liquid-Solid Fluidized Beds. AlChE J. 32, 338.10.1002/aic.690320227Suche in Google Scholar

11. Forret, A., Schweitzer, J.M., Gauthier, T., Krishna, R., Schweich, D., 2006. Scale Up of Slurry Bubble Reactors. Oil Gas Sci. Technol. Rev. IFP 61, 443–458.10.2516/ogst:2006044aSuche in Google Scholar

12. Gandhi, B., Prakash, A., Bergougnou, M.A., 1999. Hydrodynamic Behavior of Slurry Bubble Column at High Solids Concentrations. Powder Technol. 103, 80–94.10.1016/S0032-5910(98)00182-XSuche in Google Scholar

13. Ghani, S.A., Khalefa, I.A., 2011. An Experimental Study of Local Mass Transfer Measurements in a Bubble Column Reactor Using an Electrochemical Technique. Pet. Sci. Technol. 29, 1494–1503.10.1080/10916466.2011.569825Suche in Google Scholar

14. Grassberger, P., Procaccia, I., 1983. Singular Value Decomposition and the Grassberger-Procaccia Algorithm. Phys. Rev. A: At. Mol. Opt. Phys. 28, 2591.10.1103/PhysRevA.28.2591Suche in Google Scholar

15. Grassberger, P., Schreiber, Th., Schraffrath, C., 1991. Non-Linear Time Sequence Analysis. Int. J. Bifurcation Chaos 1, 52110.1142/S0218127491000403Suche in Google Scholar

16. Hu, L.S., Wang, X.J., Yu, G.S., Wang, Y.F., Zhou, Z.J., Wang, F.C., Yu, Z.H., 2009. Nonlinear Anal. 10, 41010.1016/j.nonrwa.2007.10.009Suche in Google Scholar

17. Joshi, J.B., Parasu, V.U., Prasad, Ch.V., Phanikumar, D.V., Deshphande, N.S., Thakre, S.S., Thorat, B.N., 1998. Gas Holdup Structure in Bubble Column Reactors. PINSA Rev. Article 64A 4, 441–567.Suche in Google Scholar

18. Kara, S., Kelkar, B.G., Shah, Y.T., Carr, N.L., 1982. Hydrodynamic and Axial Mixing in a Three-Phase Bubble Column. Ind. Eng. Chem. Proc. Des. Dev. 21, 584–59410.1021/i200019a009Suche in Google Scholar

19. Kim, M.C., Kim, K.Y., Kim, S., 2005. Improvement of Impedance Imaging for Two-Phase Systems with Boundary Estimation Approach in Electrical Impedance Tomography. Can. J. Chem. Eng. 83, 55–63.10.1002/cjce.5450830110Suche in Google Scholar

20. Kim, S.D., Baker, C.G.J., Bergougnou, M.A., 1972. Hold-up and Axial Mixing Characteristics of Two and Three Phases Fluidized Beds, Can. J. Chem Eng. 50, 695.10.1002/cjce.5450500603Suche in Google Scholar

21. Koide, K., Takazawa, A., Komura, M., Motsunga, H., 1984. Gas Holdup and Volumetric Liquid-Phase Mass Transfer Coefficient in Solid-Suspended Bubble Columns. J. Chem. Eng. 17, 459–466.10.1252/jcej.17.459Suche in Google Scholar

22. Krishna, R., 2000. A Scale-up Strategy for a Commercial Scale Bubble Column Slurry Reactor for Fischer-Tropsch Synthesis. Oil Gas Sci. Technol. Rev. IFP 55, 359–393.10.2516/ogst:2000026Suche in Google Scholar

23. Krishna, R., Deswart, J.W.A., Ellenberger, J., Martina, G.B., Maretto, C., 1997. Gas Holdup in Slurry Bubble-Columns—Effect of Column Diameter and Slurry Concentrations. AIChE J. 43, 311–31610.1002/aic.690430204Suche in Google Scholar

24. Krishna, R., Wilkinson, P.M., Van Dierendonck, L.L., 1991. A model for gas holdup in bubble columns incorporating the influence of gas density on flow regime transitions. Chem. Eng. Sci. 46, 2491–2496.10.1016/0009-2509(91)80042-WSuche in Google Scholar

25. Letzel, H.M., Schouten, J.C., Krishna, R., van den Bleek, C.M., 1996. Characterization of Regimes and Regime Transitions in Bubble Columns by Chaos Analysis of Pressure Signals. Chem. Eng. Sci. 52, 4447–4459.10.1016/S0009-2509(97)00290-XSuche in Google Scholar

26. Lewnard, J.J., Hsiung, T.H., White, J.F., Brown, D.M., 1990. Single-step synthesis off dimethyl ether in a slurry reactor. Chem. Eng. Sci. 45, 2735–2741.10.1016/0009-2509(90)80165-BSuche in Google Scholar

27. Lili, G., Yanfu, S., Huarui, Y., 1999. Chaotic Analysis of Pressure Fluctuation Signal in the Gas–Liquid Concurrent Flow. Chem. React. Eng. Technol. 15, 428–434.Suche in Google Scholar

28. Lin, T.J., Juang, R.C., Chen, C., 2001. Characterizations of Flow Regime Transitions in a High-Pressure Bubble Column by Chaotic Time Series Analysis of Pressure Fluctuation Signals. Chem. Eng. Sci. 56, 6241–6247.10.1016/S0009-2509(01)00258-5Suche in Google Scholar

29. Mena, P.C., Ruzicka, M.C., Rocha, F.A., 2005. Effect of Solids on Homogeneous–Heterogeneous Flow Regime Transition in Bubble Columns. Chem. Eng. Sci. 60, 6013–6026.10.1016/j.ces.2005.04.020Suche in Google Scholar

30. Mingyan, L., Jianping, W., Xiuyun, Q., Zongdingm, H., 1998. Local Chaos Characteristics in a Self-Aspirated Reversed Flow Jet Loop Reactor. Trans. Tianjin Univ. 4.Suche in Google Scholar

31. Mosdorfa, R., Shojib, M., 2003. Chaos in Bubbling-Nonlinear Analysis and Modeling. Chem. Eng. Sci. 58, 3837–3846.10.1016/S0009-2509(03)00299-9Suche in Google Scholar

32. Nedeltchev, S., 2009. Application of Chaos Analysis for the Investigation of Turbulence in Heterogeneous Bubble Columns. Chem. Eng. Technol. 32, 1974–198310.1002/ceat.200900336Suche in Google Scholar

33. Nedeltchev, S., Shaikh, A., Al-Dahhan, M., 2011. Flow Regime Identification in a Bubble Column via Nuclear Gauge Densitometry and Chaos Analysis. Chem. Eng. Technol. 34, 225–233.10.1002/ceat.201000308Suche in Google Scholar

34. Parasu, V.B., Joshi, J.B., 2000. Measurement of Gas Holdup Profiles in Bubble Column by Gamma Ray Tomography. Effect of Liquid Phase Properties. Trans. IChemE 78, Part A 425–434.10.1205/026387600527329Suche in Google Scholar

35. Prince, M.J., Blanch, H.W., 1990. Bubble Coalescence and Break Up in Air- Sparged Bubble Columns. AIChE J. 36, 1485–1499.10.1002/aic.690361004Suche in Google Scholar

36. Rabha, S., Schubert, M., Hampel, U., 2013. Intrinsic Flow Behavior in a Slurry Bubble Column: A Study on the Effect of Particle Size. Chem. Eng. Sci. 93, 401–411.10.1016/j.ces.2013.02.034Suche in Google Scholar

37. Schouten, J.C., Vander Stappen, M.I., Van den Bleek, C.M., 1996. Scale-up of Chaotic Fluidized Bed Hydrodynamics. Chem. Eng. Sci. 51, 1991–2000.10.1016/0009-2509(96)00056-5Suche in Google Scholar

38. Shah, Y.T., Kelkar, B.G., Godbole, S.P., Deckwer, W.D., 1982. Design Parameters Estimations for Bubble Column Reactors. AIChE J. 28, 353–379.10.1002/aic.690280302Suche in Google Scholar

39. Towell, G.D., Ackerman, G.H., 1972. Axial Mixing of Liquid and Gas in Large Bubble Reactors. Proceeding of 2nd International Symposium Chem. React. Eng., Amsterdam, the Netherlands, B3.1–B3.13.Suche in Google Scholar

40. Van den Bleek, C.M., Schouten, J.C., 1993. Deterministic Chaos: A NewTool in Fluidized Bed Design and Operation. Chem. Eng. J. 53, 75–87.10.1016/0923-0467(93)80009-LSuche in Google Scholar

41. Vandu, C.O., Krishna, R., 2004. Influence of Scale on the Volumetric Mass Transfer Coefficient in Bubble Columns. Chem. Eng. Proc. 43, 575–579.10.1016/S0255-2701(03)00015-1Suche in Google Scholar

42. Vinit, P.C., 2007. Hydrodynamics and Mass Transfer in Slurry Bubble Columns: Scale and Pressure Effects, PhD Thesis, Technology University Eindhoven, India.Suche in Google Scholar

43. Wilkinson, P.M., Spek, A.P., van Dierendonck, L.L., 1992. Design Parameters Estimation for Scale-up of High Pressure Bubble Columns, AlChE J. 38, 544–55410.1002/aic.690380408Suche in Google Scholar

44. Wilkinson, P.M., van Dierendonck, L.L., 1990. Pressure and Gas Density Effects on Bubble Break-up and Gas Hold-up in Bubble Columns. Chem. Eng. Sci. 45, 2309–2315.10.1016/0009-2509(90)80110-ZSuche in Google Scholar

45. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A., 1985. Determining Lyapunov Exponent from a Time series. Physica D 16, 285–31710.1016/0167-2789(85)90011-9Suche in Google Scholar

46. Xiaoxiang, L., Yanfu, S., Lili, G. 2002. Chaotic Identification of Regimes of Gas–Liquid–Solid Three-Phase Co-Current Flow System. J. Chem. Eng Chinese Univ. 16, 84–87.Suche in Google Scholar

47. Xue, J., 2004. Bubble Velocity Size and Interfacial Area Measurements in Bubble Columns, PhD Dissertation, Washington University, St. Louis.Suche in Google Scholar

48. Xue, J., Al-Dahhan, M., Dudukovica, M.P., Mudde, R.F., 2008. Four-Point Optical Probe for Measurement of Bubble Dynamics: Validation of the Technique. Flow Meas. Instrum. 19, 293–300.10.1016/j.flowmeasinst.2007.10.004Suche in Google Scholar

49. Yang, Y.B., Devanathan, N., Dudukovic, M.P., 1992. Liquid Backmixing in Bubble Columns. Chem. Eng. Sci. 47, 2859–2864.10.1016/0009-2509(92)87142-DSuche in Google Scholar

50. Yasunishi, M., Fukuma, K., Muroyama, J., 1986. Measurements of the Behavior of Gas Bubbles and Gas Holdup in a Slurry Bubble Column by a Dual Electro-Resistivity Probe Method. Chem. Eng. J. 19, 119–444.10.1252/jcej.19.444Suche in Google Scholar

51. Youssef, A., 2010. Fluid Dynamics and Scale-Up Of Bubble Columns with Internals, PhD Dissertation, Washington University, St. Louis.Suche in Google Scholar

52. Zhang, Y., Li, Z., Li, H., Wang, L., Li, X., 2012. Studies on Hydrodynamics of turbulent Slurry Bubble Column-Modeling of Bubble Column with Multi-Layer Screens. CIESC J. 63.Suche in Google Scholar

Published Online: 2016-2-20
Published in Print: 2016-4-1

©2016 by De Gruyter

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijcre-2015-0035/html
Button zum nach oben scrollen