Startseite Changes of the peripheral blood mononuclear cells membrane fluidity from type 1 Gaucher disease patients: an electron paramagnetic resonance study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Changes of the peripheral blood mononuclear cells membrane fluidity from type 1 Gaucher disease patients: an electron paramagnetic resonance study

  • Aleksandra Pavićević , Milan Lakočević , Milan Popović , Ana Popović-Bijelić , Marko Daković und Miloš Mojović EMAIL logo
Veröffentlicht/Copyright: 22. Dezember 2017

Abstract

Gaucher disease (GD) is a lysosomal storage disorder, caused by an impaired function of β-glucocerebrosidase, which results in accumulation of glucocerebroside in cells, and altered membrane ordering. Using electron paramagnetic resonance spin labeling, a statistically significant difference in the order parameter between the peripheral blood mononuclear cell membranes of GD patients and healthy controls was observed. Moreover, the results show that the introduction of the enzyme replacement therapy leads to the restoration of the physiological membrane fluidity. Accordingly, this simple method could serve as a preliminary test for GD diagnosis and therapy efficiency.

Acknowledgments

This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant number III41005).

References

Berger, J., Stirnemann, J., Bourgne, C., Pereira, B., Pigeon, P., Heraoui, D., Froissart, R., Rapatel, C., Rose, C., Belmatoug, N., et al. (2012). The uptake of recombinant glucocerebrosidases by blood monocytes from type 1 Gaucher disease patients is variable. Br. J. Haematol. 157, 274–277.10.1111/j.1365-2141.2011.08989.xSuche in Google Scholar

Berliner, L.J. (1976). Spin Labeling. Theory and Applications (New York, USA: Academic Press Inc.).10.1007/978-1-4613-0743-3Suche in Google Scholar

Björkqvist, Y.J.E., Brewer, J., Bagatolli, L.A., Slotte, J.P., and Westerlund, B. (2009). Thermotropic behavior and lateral distribution of very long chain sphingolipids. Biochim. Biophys. Acta 1788, 1310–1320.10.1016/j.bbamem.2009.02.019Suche in Google Scholar

Brady, R.O. (1977). Heritable catabolic and anabolic disorders of lipid metabolism. Metab. Clin. Exp. 26, 329–345.10.1016/0026-0495(77)90080-4Suche in Google Scholar

de Almeida, R.F.M., Fedorov, A., and Prieto, M. (2003). Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85, 2406–2416.10.1016/S0006-3495(03)74664-5Suche in Google Scholar

Dulac, O., Lassonde, M., and Sarnat, H.B. (2013). Pediatric Neurology, Part III, Volume 113 (Edinburgh, UK; New York, USA: Elsevier).Suche in Google Scholar

Futerman, A. H. (2006). Cellular pathology in Gaucher disease. In: Gaucher Disease, A. H. Futerman and A. Zimran, eds. (Boca Raton, FL, USA: CRC Press), pp. 97–108.10.1201/9781420005509.ch6Suche in Google Scholar

Goker-Alpan, O., Hruska, K.S., Orvisky, E., Kishnani, P.S., Stubblefield, B.K., Schiffmann, R., and Sidransky, E. (2005). Divergent phenotypes in Gaucher disease implicate the role of modifiers. J. Med. Genet. 42, e37.10.1136/jmg.2004.028019Suche in Google Scholar

Grant, C.W.M., Mehlhorn, I.E., Florio, E., and Barber, K.R. (1987). A long chain spin label for glycosphingolipid studies: transbilayer fatty acid interdigitation of lactosyl ceramide. Biochim. Biophys. Acta 902, 169–177.10.1016/0005-2736(87)90292-6Suche in Google Scholar

Hein, L.K., Duplock, S., Hopwood, J.J., and Fuller, M. (2008). Lipid composition of microdomains is altered in a cell model of Gaucher disease. J. Lipid Res. 49, 1725–1734.10.1194/jlr.M800092-JLR200Suche in Google Scholar PubMed PubMed Central

Horowitz, M., Elstein, D., Zimran, A., and Goker-Alpan, O. (2016). New directions in Gaucher disease. Hum. Mutat. 37, 1121–1136.10.1002/humu.23056Suche in Google Scholar PubMed

Hruska, K.S., LaMarca, M.E., Scott, C.R., and Sidransky, E. (2008). Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum. Mutat. 29, 567–583.10.1002/humu.20676Suche in Google Scholar

Ilan, Y., Elstein, D., and Zimran, A. (2009). Glucocerebroside: an evolutionary advantage for patients with Gaucher disease and a new immunomodulatory agent. Immunol. Cell Biol. 87, 514–524.10.1038/icb.2009.42Suche in Google Scholar

Jardim, L.B., Villanueva, M.M., de Souza, C.F.M., and Netto, C.B.O. (2010). Clinical aspects of neuropathic lysosomal storage disorders. J. Inherit. Metab. Dis. 33, 315–329.10.1007/s10545-010-9079-5Suche in Google Scholar

Jmoudiak, M. and Futerman, A.H. (2005). Gaucher disease: pathological mechanisms and modern management. Br. J. Haematol. 129, 178–188.10.1111/j.1365-2141.2004.05351.xSuche in Google Scholar

Kocherginsky, N.M. and Swartz, H.M. (1995). Nitroxide Spin Labels: Reactions in Biology and Chemistry (Boca Raton, FL, USA: CRC Press Inc.).Suche in Google Scholar

Lavie, Y., Fiucci, G., and Liscovitch, M. (1998). Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J. Biol. Chem. 273, 32380–32383.10.1074/jbc.273.49.32380Suche in Google Scholar

Maor, G., Cabasso, O., Krivoruk, O., Rodriguez, J., Steller, H., Segal, D., and Horowitz, M. (2016). The contribution of mutant GBA to the development of Parkinson disease in Drosophila. Hum. Mol. Genet. 25, 2712–2727.Suche in Google Scholar

Maunula, S., Björkqvist, Y.J.E., Slotte, J.P., and Ramstedt, B. (2007). Differences in the domain forming properties of N-palmitoylated neutral glycosphingolipids in bilayer membranes. Biochim. Biophys. Acta 1768, 336–345.10.1016/j.bbamem.2006.09.003Suche in Google Scholar

Miller, S.P.F., Zirzow, G.C., Doppelt, S.H., Brady, R.O., and Barton, N.W. (1996). Analysis of the lipids of normal and Gaucher bone marrow. J. Lab. Clin. Med. 127, 353–358.10.1016/S0022-2143(96)90183-3Suche in Google Scholar

Nalls, M.A., Duran, R., Lopez, G., Kurzawa-Akanbi, M., McKeith, I.G., Chinnery, P.F., Morris, C.M., Theuns, J., Crosiers, D., Cras, P., et al. (2013). A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. J Am Med Assoc Neurol. 70, 727–735.10.1001/jamaneurol.2013.1925Suche in Google Scholar PubMed PubMed Central

Pike, L.J. (2009). The challenge of lipid rafts. J. Lipid Res. 50, S323–S328.10.1194/jlr.R800040-JLR200Suche in Google Scholar PubMed PubMed Central

Silva, L.C., de Almeida, R.F.M., Castro, B.M., Fedorov, A., and Prieto, M. (2007). Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys. J. 92, 502–516.10.1529/biophysj.106.091876Suche in Google Scholar PubMed PubMed Central

Sklar, L.A. (1980). The partition of cis-parinaric acid and trans-parinaric acid among aqueous, fluid lipid, and solid lipid phases. Mol. Cell. Biochem. 32, 169–177.10.1007/BF00227444Suche in Google Scholar

Sonnino, S., Mauri, L., Chigorno, V., and Prinetti, A. (2007). Gangliosides as components of lipid membrane domains. Glycobiology 17, 1R–13R.10.1093/glycob/cwl052Suche in Google Scholar

Subczynski, W.K. and Kusumi, A. (2003). Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta 1610, 231–243.10.1016/S0005-2736(03)00021-XSuche in Google Scholar

Tamargo, R.J., Velayati, A., Goldin, E., and Sidransky, E. (2012). The role of saposin C in Gaucher disease. Mol. Genet. Metab. 106, 257–263.10.1016/j.ymgme.2012.04.024Suche in Google Scholar PubMed PubMed Central

Tekoah, Y., Tzaban, S., Kizhner, T., Hainrichson, M., Gantman, A., Golembo, M., Aviezer, D., and Shaaltiel, Y. (2013). Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems. Biosci. Rep. 33, 771–781.10.1042/BSR20130081Suche in Google Scholar PubMed PubMed Central

van Meer, G., Wolthoorn, J., and Degroote, S. (2003). The fate and function of glycosphingolipid glucosylceramide. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 869–873.10.1098/rstb.2003.1266Suche in Google Scholar PubMed PubMed Central

Varela, A.R.P., Gonçalves da Silva, A.M.P.S., Fedorov, A., Futerman, A.H., Prieto, M., and Silva, L.C. (2013). Effect of glucosylceramide on the biophysical properties of fluid membranes. Biochim. Biophys. Acta 1828, 1122–1130.10.1016/j.bbamem.2012.11.018Suche in Google Scholar PubMed

Varela, A.R.P., Couto, A.S., Fedorov, A., Futerman, A.H., Prieto, M., and Silva, L.C. (2016). Glucosylceramide reorganizes cholesterol-containing domains in a fluid phospholipid membrane. Biophys. J. 110, 612–622.10.1016/j.bpj.2015.12.019Suche in Google Scholar PubMed PubMed Central

Varela, A.R.P., Ventura, A.E., Carreira, A.C., Fedorov, A., Futerman, A.H., Prieto, M., and Silva, L.C. (2017). Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes. Phys. Chem. Chem. Phys. 19, 340–346.10.1039/C6CP07227ESuche in Google Scholar

Zhang, C.K., Stein, P.B., Liu, J., Wang, Z., Yang, R., Cho, J.H., Gregersen, P.K., Aerts, J.M.F.G., Zhao, H., Pastores, G.M., et al. (2012). Genome-wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation. Am. J. Hematol. 87, 377–383.10.1002/ajh.23118Suche in Google Scholar PubMed PubMed Central

Zimran, A. and Elstein, D. (2015). Gaucher disease and related lysosomal storage diseases. In: Williams Hematology, 9th Edition, K. Kaushansky, M.A. Lichtman, J. Prchal, M.M. Levi, O. Press, L. Burns, and M. Caligiuri, eds. (New York: McGraw-Hill Education/Medical), pp. 1121–1136.Suche in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2017-0241).


Received: 2017-09-14
Accepted: 2017-12-10
Published Online: 2017-12-22
Published in Print: 2018-04-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2017-0241/html
Button zum nach oben scrollen