Abstract
Employing hippocampal synaptosomes from amyloid precursor protein (APP)-deleted mice we analyzed the immediate effects of amyloid beta peptide 42 (Aβ42) peptide in its oligomeric or fibrillar assembly or of soluble amyloid precursor protein alpha (sAPPα) protein on their bioenergetic activity. Upon administration of oligomeric Aβ42 peptide for 30 min we observed a robust decrease both in mitochondrial activity and in mitochondrial membrane potential (MMP). In contrast the respective fibrillary or scrambled peptides showed no effect, indicating that inhibition strictly depends on the oligomerization status of the peptide. Hippocampal synaptosomes from old APP-KO mice revealed a further reduction of their already impaired bioenergetic activity upon incubation with 10 μm Aβ42 peptide. In addition we evaluated the influence of the sAPPα protein on mitochondrial activity of hippocampal synaptosomes derived from young or old APP-KO animals. In neither case 20 nm nor 200 nm sAPPα protein had an effect on mitochondrial metabolic activity. Our findings demonstrate that hippocampal synaptosomes derived from APP-KO mice are a most suitable model system to evaluate the impact of Aβ42 peptide on its bioenergetic activity and to further elucidate the molecular mechanisms underlying the impairments by oligomeric Aβ42 on mitochondrial function. Our data demonstrate that extracellular Aβ42 peptide is taken up into synaptosomes where it immediately attenuates mitochondrial activity.
Acknowledgments
We are grateful to Herbert Zimmermann for valuable suggestions. We thank Ulrike Müller for providing the animals. The authors declare that they have no conflicts of interest with the contents of this article. All experiments were conducted in compliance with the ARRIVE guidelines and according to the ethical guidelines of the Goethe University. This work was supported by grants from the Deutsche Forschungsgemeinschaft, Funder Id: 10.13039/501100001659, (SFB 834, SFB1080, FOR2325, EXC 115 and EXC 147), the Max Planck Fellow Program and Gutenberg Research College (GRC) at Johannes Gutenberg University Mainz (A. A.-P.).
References
Abramov, A.Y., Canevari, L., and Duchen, M.R. (2004). β-Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J. Neurosci. 24, 565–575.10.1523/JNEUROSCI.4042-03.2004Search in Google Scholar
Anandatheerthavarada, H.K., Biswas, G., Robin, M., and Avadhani, N.G. (2003). Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J. Cell Biol. 161, 41–54.10.1083/jcb.200207030Search in Google Scholar
Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215.10.1016/S0166-2236(98)01349-6Search in Google Scholar
Barth, J. and Volknandt, W. (2011). Proteomic investigations of the synaptic vesicle interactome. Expert Rev. Proteomics 8, 211–220.10.1586/epr.11.7Search in Google Scholar PubMed
Bitan, G., Kirkitadze, M.D., Lomakin, A., Vollers, S.S., Benedek, G.B., and Teplow, D.B. (2003). Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA 100, 330–335.10.1073/pnas.222681699Search in Google Scholar PubMed PubMed Central
Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C.M., and Stefani, M. (2002). Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511.10.1038/416507aSearch in Google Scholar PubMed
Burré, J. and Volknandt, W. (2007). The synaptic vesicle proteome. J. Neurochem. 101, 1448–1462.10.1111/j.1471-4159.2007.04453.xSearch in Google Scholar PubMed
Cardoso, S.M. (2001). Functional mitochondria are required for amyloid β-mediated neurotoxicity. FASEB J. 15, 1439–1441.10.1096/fj.00-0561fjeSearch in Google Scholar PubMed
Cardoso, S.M., Santana, I., Swerdlow, R.H., and Oliveira, C.R. (2004). Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Aβ toxicity. J. Neurochem. 89, 1417–1426.10.1111/j.1471-4159.2004.02438.xSearch in Google Scholar PubMed
Casley, C.S., Land, J.M., Sharpe, M.A., Clark, J.B., Duchen, M.R., and Canevari, L. (2002). β-Amyloid fragment 25–35 causes mitochondrial dysfunction in primary cortical neurons, Neurobiol. Disease 10, 258–267.Search in Google Scholar
Chasseigneaux, S. and Allinquant, B. (2012). Functions of Aβ, sAPPα and sAPPβ similarities and differences. J. Neurochem. 120 (Suppl 1), 99–108.10.1111/j.1471-4159.2011.07584.xSearch in Google Scholar PubMed
Choi, S.W., Gerencser, A.A., and Nicholls, D.G. (2009). Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J. Neurochem. 109, 1179–1191.10.1111/j.1471-4159.2009.06055.xSearch in Google Scholar
Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., et al. (1997). Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat. Med. 3, 67–72.10.1038/nm0197-67Search in Google Scholar
Dahlgren, K.N., Manelli, A.M., Stine, W., Blaine, J.R., Baker, L.K., Krafft, G.A., and LaDu, M. (2002). Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046–32053.10.1074/jbc.M201750200Search in Google Scholar
Devi, L. and Anandatheerthavarada, H.K. (2010). Mitochondrial trafficking of APP and α synuclein: relevance to mitochondrial dysfunction in Alzheimer’s and Parkinson’s diseases. Biochim. Biophys. Acta 1802, 11–19.10.1016/j.bbadis.2009.07.007Search in Google Scholar
Devi, L., Prabhu, B.M., Galati, D.F., Avadhani, N.J., and Anandatheerthavarada, H.K. (2006). Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci. 26, 9057–9068.10.1523/JNEUROSCI.1469-06.2006Search in Google Scholar
Du, H. and Yan, S.S. (2010). Mitochondrial permeability transition pore in Alzheimer’s disease: cyclophilin D and amyloid β. Biochim. Biophys. Acta 1802, 198–204.10.1016/j.bbadis.2009.07.005Search in Google Scholar
Du, H., Guo, L., Yan, S., Sosunov, A.A., McKhann, G.M., and Yan, S.S. (2010). Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA 107, 18670–186705.10.1073/pnas.1006586107Search in Google Scholar
Dunkley, P.R., Heath, J.W., Harrison, S.M., Jarvie, P.E., Glenfield, P.J., and Rostas, J.A.P. (1988). A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. A rapid Percoll gradient procedure. Brain Res. 441, 59–71.10.1016/0006-8993(88)91383-2Search in Google Scholar
Erikstein, B.S., Hagland, H.R., Nikolaisen, J., Kulawiec, M., Singh, K.K., Gjertsen, B.T., and Tronstad, K.J. (2010). Cellular stress induced by resazurin leads to autophagy and cell death via production od reactive oxygen species and mitochondrial impairment. J. Cell. Biochem. 111, 574–584.10.1002/jcb.22741Search in Google Scholar PubMed PubMed Central
Ferreiro, E., Oliveira, C.R., and Pereira, C. (2004). Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-β peptide. J. Neurosci. Res. 76, 872–880.10.1002/jnr.20135Search in Google Scholar PubMed
Finder, V.H. and Glockshuber, R. (2007). Amyloid-β aggregation. Neurodegener. Dis. 4, 13–27.10.1159/000100355Search in Google Scholar
Gabuzda, D., Busciglio, J., Chen, L.B., Matsudaira, P., and Yankner, B.A. (1994). Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J. Biol. Chem. 269, 13623–13628.10.1016/S0021-9258(17)36875-8Search in Google Scholar
Gillardon, F., Rist, W., Kussmaul, L., Vogel, J., Berg, M., Danzer, K., Kraut, N., and Hengerer, B. (2007). Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition. Proteomics 7, 605–616.10.1002/pmic.200600728Search in Google Scholar
Gloeckner, H., Jonuleit, T., and Lemke, H.D. (2001). Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar blue. J. Immunol. Methods 252, 131–138.10.1016/S0022-1759(01)00347-7Search in Google Scholar
Habib, A., Sawmiller, D., and Tan, J. (2016). Restoring soluble amyloid precursor protein α functions as a potential treatment for Alzheimer’s disease. J. Neurosci. Res. 95, 973–991.10.1002/jnr.23823Search in Google Scholar PubMed PubMed Central
Hauptmann, S., Scherping, I., Dröse, S., Brandt, U., Schulz, K.L., Jendrach, M., Leuner, K., Eckert, A., and Müller, W.E. (2009). Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol. Aging 30, 1574–1586.10.1016/j.neurobiolaging.2007.12.005Search in Google Scholar PubMed
Hensley, K., Carney, J.M., Mattson, M.P., Aksenova, M., Harris, M., Wu, J.F., Floyd, R.A., and Butterfield, D.A. (1994). A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 3270–3274.10.1073/pnas.91.8.3270Search in Google Scholar PubMed PubMed Central
Irie, K., Murakami, K., Masuda, Y., Morimoto, A., Ohigashi, H., Ohashi, R., Takegoshi, K., Nagao, M., Shimuzu, T., and Shirasawa, T. (2005). Structure of β-amyloid fibrils and its relevance to their neurotoxicity: implications for the pathogenesis of Alzheimer’s disease. J. Biosci. Bioeng. 99, 437–447.10.1263/jbb.99.437Search in Google Scholar PubMed
Jacobsen, K.T. and Iverfeldt, K. (2009). Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Cell. Mol. Life Sci. 66, 2299–2318.10.1007/s00018-009-0020-8Search in Google Scholar PubMed
Johnson, M.K. (1960). The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparations. Biochem. J. 77, 610–618.10.1042/bj0770610Search in Google Scholar PubMed PubMed Central
Kang, J., Lemaire, H.G., Unterbeck, A., Salbaum, J.M., Masters, C.L., Grzeschik, K.H., Multhaup, G., Beyreuther, K., and Müller-Hill, B. (1987). The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736.10.1038/325733a0Search in Google Scholar PubMed
Keil, U., Bonert, A., Marques, C.A., Scherping, I., Weyermann, J., Strosznajder, J.B., Müller-Spahn, F., Haass, C., Czech, C., Pradier, L., et al. (2004). Amyloid β-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J. Biol. Chem. 279, 50310–50320.10.1074/jbc.M405600200Search in Google Scholar PubMed
Keller, J.N., Pang, Z., Geddes, J.W., Begley, J.G., Germeyer, A., Waeg, G., and Mattson, M.P. (1997). Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid β-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem. 69, 273–284.10.1046/j.1471-4159.1997.69010273.xSearch in Google Scholar PubMed
Lansbury, P.T. (1999). Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. USA 96, 3342–3344.10.1073/pnas.96.7.3342Search in Google Scholar PubMed PubMed Central
Laßek, M., Weingarten, J., Einsfelder, U., Brendel, P., Müller, U., and Volknandt, W. (2013). Amyloid precursor proteins are constituents of the presynaptic active zone. J. Neurochem. 127, 48–56.10.1111/jnc.12358Search in Google Scholar PubMed
Laßek, M., Weingarten, J., Wegner, M., Mueller, B.F., Rohmer, M., Baeumlisberger, D., Arrey, T.N., Hick, M., Ackermann, J., Acker-Palmer, A., et al. (2016). APP is a context-sensitive regulator of the hippocampal presynaptic active zone. PLoS Comput. Biol. 12, e1004832.10.1371/journal.pcbi.1004832Search in Google Scholar PubMed PubMed Central
Laßek, M., Weingarten, J., Wegner, M., Neupärtl, M., Arrey, T.N., Harde, E., Beckert, B., Golghalvany, V., Ackermann, J., Koch, I., et al. (2017). APP deletion accounts for age-dependent changes in the bioenergetic metabolism and in hyperphosphorylated CaMKII at stimulated hippocampal presynaptic active zones. Front. Synaptic Neurosci. 9, 1–14. eCollection 2017.10.3389/fnsyn.2017.00001Search in Google Scholar PubMed PubMed Central
Lemere, C.A., Blusztajn, J.K., Yamaguchi, H., Wisniewski, T., Saido, T.C., and Selkoe, D.J. (1996). Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16–32.10.1006/nbdi.1996.0003Search in Google Scholar PubMed
Leuner, K., Müller, W.E., and Reichert, A.S. (2012). From mitochondrial dysfunction to amyloid beta formation: novel insights into the pathogenesis of Alzheimer’s disease. Mol. Neurobiol. 46, 186–193.10.1007/s12035-012-8307-4Search in Google Scholar PubMed
Li, Z.W., Stark, G., Götz, J., Rülicke, T., Gschwind, M., Huber, G., Müller, U., and Weissmann, C. (1996). Generation of mice with a 200-kb amyloid precursor protein gene deletion by Cre recombinase-mediated site-specific recombination in embryonic stem cells. Proc. Natl. Acad. Sci. USA 93, 6158–6162.10.1073/pnas.93.12.6158Search in Google Scholar PubMed PubMed Central
Lorenzo, A. and Yankner, B.A. (1994). β-Amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl. Acad. Sci. USA 91, 12243–12247.10.1073/pnas.91.25.12243Search in Google Scholar
Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., et al. (2004). ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304, 448–452.10.1126/science.1091230Search in Google Scholar
Mattson, M.P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R.E. (1992). β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 346–389.10.1523/JNEUROSCI.12-02-00376.1992Search in Google Scholar
Mehta, N.D., Refolo, L.M., Eckman, C., Sanders, S., Yager, D., Perez-Tur, J., Younkin, S., Duff, K., Hardy, J., and Hutton, M. (1998). Increased Aβ42(43) from cell lines expressing presenilin 1 mutations. Ann. Neurol. 43, 256–258.10.1002/ana.410430217Search in Google Scholar
Mockett, B.G., Richter, M., Abraham, W.C., and Müller, U.C. (2017). Therapeutic potential of secreted amyloid precursor protein APPsα. Front. Mol. Neurosci. 10, 30.10.3389/fnmol.2017.00030Search in Google Scholar
Müller, U.C. and Zheng, H. (2012). Physiological functions of APP family proteins. Cold Spring Harb. Perspect. Med. 2, 4:a006288.10.1101/cshperspect.a006288Search in Google Scholar
Mungarro-Menchaca, X., Ferrera, P., Moran, J., and Arias, C. (2002). β-Amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. J. Neurosci. Res. 68, 89–96.10.1002/jnr.10193Search in Google Scholar
Pera, M., Larrea, D., Guardia-Laguarta, C., Montesinos, J., Velasco, K.R., Agrawal, R.R., Xu, Y., Chan, R.B., Di Paolo, G., Mehler, M.F., et al. (2017). Increased localization in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J. 36, 3356–3371.10.15252/embj.201796797Search in Google Scholar
Phinney, A.L., Calhoun, M.E., Wolfer, D.P., Lipp, H.P., Zheng, H., and Jucker, M. (1999). No hippocampal neuron or synaptic bouton loss in learning-impaired aged β-amyloid precursor protein-null mice. Neuroscience 90, 1207–1216.10.1016/S0306-4522(98)00645-9Search in Google Scholar
Priller, C., Bauer, T., Mitteregger, G., Krebs, B., Kretzschmar, H.A., and Herms, J. (2006). Synapse formation and function is modulated by the amyloid precursor protein. J. Neurosci. 26, 7212–7221.10.1523/JNEUROSCI.1450-06.2006Search in Google Scholar PubMed PubMed Central
Reddy, P.H. (2009). Amyloid β, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol. 218, 286–292.10.1016/j.expneurol.2009.03.042Search in Google Scholar
Reddy, P.H., Manczak, M., Mao, P., Calkins, M.J., Reddy, A.P., and Shirendeb, U. (2010). Amyloid-β and mitochondria in aging and Alzheimer’s disease: implications for synaptic damage and cognitive decline. J. Alzheimers Dis. 20 (Suppl. 2), S499–S512.10.3233/JAD-2010-100504Search in Google Scholar
Rhein, V., Song, X., Wiesner, A., Ittner, L.M., Baysang, G., Meier, F., Ozmen, L., Bluethmann, H., Dröse, S., Brandt, U., et al. (2009). Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc. Natl. Acad. Sci. USA 106, 20057–20062.10.1073/pnas.0905529106Search in Google Scholar
Ring, S., Weyer, S.W., Kilian, S.B., Waldron, E., Pietrzik, C.U., Filippov, M.A., Herms, J., Buchholz, C., Eckman, C.B., Korte, M., et al. (2007). The secreted β-amyloid precursor protein ectodomain APPsα is sufficient to rescue the anatomical, behavioral, and electrophysiological abnormalities of APP-deficient mice. J. Neurosci. 27, 7817–7826.10.1523/JNEUROSCI.1026-07.2007Search in Google Scholar
Selkoe, D.J. (2002). Alzheimer’s disease is a synaptic failure. Science 298, 789–791.10.1126/science.1074069Search in Google Scholar
Sheng, B.Y., Niu, Y., Zhou, H., Yan, J.X., Zhao, N.M., Zhang, Y.F., and Gong, Y.D. (2009). The mitochondrial function was impaired in APP knockout mouse embryo fibroblast cells. Chinese Sci. Bull. 54, 1725–1731.10.1007/s11434-009-0239-7Search in Google Scholar
Springer, J.E., Azbill, R.D., and Carlson, S.L. (1998). A rapid and sensitive assay for measuring mitochondrial metabolic activity in isolated neural tissue. Brain Res. Protoc. 2, 259–263.10.1016/S1385-299X(97)00045-7Search in Google Scholar
Stine, W.B., Jungbauer, L., Yu, C., and LaDu, M.J. (2011). Preparing synthetic Aβ in different aggregation states. Methods Mol. Biol. 670, 13–32.10.1007/978-1-60761-744-0_2Search in Google Scholar PubMed PubMed Central
Su, B., Wang, X., Zheng, L., Perry, G., Smith, M.A., and Zhu, X. (2010). Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim. Biophys. Acta 1802, 135–142.10.1016/j.bbadis.2009.09.013Search in Google Scholar PubMed PubMed Central
Suzuki, N., Cheung, T.T., Cai, X., Odaka, A., Otvos, L. Jr., Eckman, C., Golde, T.E., and Younkin, S.G. (1994). An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264, 1336–1340.10.1126/science.8191290Search in Google Scholar PubMed
Swerdlow, R.H. (2007). Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J. Neurosci. Res. 85, 3416–3428.10.1002/jnr.21167Search in Google Scholar PubMed
Takuma, K., Yao, J., Huang, J., Xu, H., Chen, X., Luddy, J., Trillat, A.C., Stern, D.M., Arancio, O., and Yan, S.S. (2005). ABAD enhances Aβ-induced cell stress via mitochondrial dysfunction. FASEB J. 19, 597–598.10.1096/fj.04-2582fjeSearch in Google Scholar PubMed
Townsend, M., Shankar, G.M., Mehta, T., Walsh, D.M., Selkoe D.J. (2006). Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol. 572, 477–492.10.1113/jphysiol.2005.103754Search in Google Scholar PubMed PubMed Central
Trimmer, P.A., Keeney, P.M., Borland, M.K., Simon, F.A., Almeida, J., Swerdlow, R.H., Parks, J.P., Parker, W.D. Jr., and Bennett, J.P. Jr. (2004). Mitochondrial abnormalities in cybrid cell models of sporadic Alzheimer’s disease worsen with passage in culture. Neurobiol. Dis. 15, 29–39.10.1016/j.nbd.2003.09.011Search in Google Scholar PubMed
Volknandt, W. and Karas, M. (2012). Proteomic analysis of the presynaptic active zone. Exp. Brain Res. 217, 449–461.10.1007/s00221-012-3031-xSearch in Google Scholar PubMed
Walsh, D.M., Klyubin, I., Fadeeva, J.V., Rowan, M.J., and Selkoe, D.J. (2002a). Amyloid-β oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Transact. 30, 552–557.10.1042/bst0300552Search in Google Scholar PubMed
Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., and Selkoe, D.J. (2002b). Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539.10.1038/416535aSearch in Google Scholar PubMed
Wan, B., Doumen, C., Duszynski, J., Salama, G., Vary, T.C., and LaNoue, K.F. (1993). Effects on cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am. J. Physiol. 265, H453–H460.10.1152/ajpheart.1993.265.2.H453Search in Google Scholar PubMed
Wang, X., Su, B., Siedlak, S.L., Moreira, P.I., Fujioka, H., Wang, Y., Casadesus, G., and Zhu, X. (2008). Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. USA 105, 19318–19323.10.1073/pnas.0804871105Search in Google Scholar PubMed PubMed Central
Wang, X., Su, B., Lee, H.G., Li, X., Perry, G., Smith, M.A., and Zhu, X. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci. 29, 9090–9103.10.1523/JNEUROSCI.1357-09.2009Search in Google Scholar PubMed PubMed Central
Wang, L., Guo, L., Lu, L., Sun, H., Shao, M., Beck, S.J., Li, L., Ramachandran, J., Du, Y., and Du, H. (2016). Synaptosomal mitochondrial dysfunction in 5xFAD mouse model of Alzheimer’s disease. PLoS One 11, e0150441.10.1371/journal.pone.0150441Search in Google Scholar PubMed PubMed Central
Webster, M.T., Pearce, B.R., Bowen, D.M., and Francis, P.T. (1998). The effects of perturbed energy metabolism on the processing of amyloid precursor protein in PC12cells. J. Neural Transm. 105, 839–853.10.1007/s007020050098Search in Google Scholar PubMed
Weingarten, J., Laßek, M., Mueller, B.F., Rohmer, M., Lunger, I., Baeumlisberger, D., Dudek, S., Gogesch, P., Karas, M., and Volknandt, W. (2014). The proteome of the presynaptic active zone from mouse brain. Mol. Cell. Neurosci. 59, 106–118.10.1016/j.mcn.2014.02.003Search in Google Scholar PubMed
Weingarten, J., Laßek, M., Mueller, F., Rohmer, M., Baeumlisberger, D., Beckert, B., Ade, J., Gogesch, P., Acker-Palmer, A., Karas, M., et al. (2015). Regional specializations of the PAZ proteomes derived from mouse hippocampus, olfactory bulb and cerebellum. Proteomes 3, 74–88.10.3390/proteomes3020074Search in Google Scholar PubMed PubMed Central
Weingarten, J., Weingarten, M., Wegner, M., and Volknandt, W. (2017). APP – a novel player within the presynaptic active zone proteome. Front. Mol. Neurosci. 10, 1–6.10.3389/fnmol.2017.00043Search in Google Scholar PubMed PubMed Central
Whittaker, V.P. (1993). Thirty years of synaptosome research. J. Neurocytol. 22, 735–742.10.1007/BF01181319Search in Google Scholar PubMed
Whittaker, V.P., Michaelson, I.A., and Kirkland, R.J. (1964). The separation of synaptic vesicles from nerve-ending particles (’synaptosomes’). Biochem. J. 90, 293–303.10.1042/bj0900293Search in Google Scholar PubMed PubMed Central
Wong, P.C., Cai, H., Borchelt, D.R., and Price, D.L. (2002). Genetically engineered mouse models of neurodegenerative diseases. Nat. Neurosci. 5, 633–639.10.1038/nn0702-633Search in Google Scholar PubMed
Zhang, H., Huang, H.M., Carson, R.C., Mahmood, J., Thomas, H.M., and Gibson, G.E. (2001). Assessment of membrane potentials of mitochondrial populations in living cells. Anal. Biochem. 298, 170–180.10.1006/abio.2001.5348Search in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells
- Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia
- Research Articles/Short Communications
- Protein Structure and Function
- CRISPR/Cas9-mediated modification of the extreme C-terminus impairs PDGF-stimulated activity of Duox2
- Membranes, Lipids, Glycobiology
- Changes of the peripheral blood mononuclear cells membrane fluidity from type 1 Gaucher disease patients: an electron paramagnetic resonance study
- Molecular Medicine
- Aβ42 oligomers impair the bioenergetic activity in hippocampal synaptosomes derived from APP-KO mice
- Cell Biology and Signaling
- Molecular determinants of Drosophila immunophilin FKBP39 nuclear localization
- The effect of lncRNA HOTAIR on chemoresistance of ovarian cancer through regulation of HOXA7
- Novel Techniques
- Determination of selenium during pathogenesis of hepatic fibrosis employing hydride generation and inductively coupled plasma mass spectrometry
Articles in the same Issue
- Frontmatter
- Reviews
- Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells
- Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia
- Research Articles/Short Communications
- Protein Structure and Function
- CRISPR/Cas9-mediated modification of the extreme C-terminus impairs PDGF-stimulated activity of Duox2
- Membranes, Lipids, Glycobiology
- Changes of the peripheral blood mononuclear cells membrane fluidity from type 1 Gaucher disease patients: an electron paramagnetic resonance study
- Molecular Medicine
- Aβ42 oligomers impair the bioenergetic activity in hippocampal synaptosomes derived from APP-KO mice
- Cell Biology and Signaling
- Molecular determinants of Drosophila immunophilin FKBP39 nuclear localization
- The effect of lncRNA HOTAIR on chemoresistance of ovarian cancer through regulation of HOXA7
- Novel Techniques
- Determination of selenium during pathogenesis of hepatic fibrosis employing hydride generation and inductively coupled plasma mass spectrometry