Changes of the peripheral blood mononuclear cells membrane fluidity from type 1 Gaucher disease patients: an electron paramagnetic resonance study
-
Aleksandra Pavićević
Abstract
Gaucher disease (GD) is a lysosomal storage disorder, caused by an impaired function of β-glucocerebrosidase, which results in accumulation of glucocerebroside in cells, and altered membrane ordering. Using electron paramagnetic resonance spin labeling, a statistically significant difference in the order parameter between the peripheral blood mononuclear cell membranes of GD patients and healthy controls was observed. Moreover, the results show that the introduction of the enzyme replacement therapy leads to the restoration of the physiological membrane fluidity. Accordingly, this simple method could serve as a preliminary test for GD diagnosis and therapy efficiency.
Acknowledgments
This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (grant number III41005).
References
Berger, J., Stirnemann, J., Bourgne, C., Pereira, B., Pigeon, P., Heraoui, D., Froissart, R., Rapatel, C., Rose, C., Belmatoug, N., et al. (2012). The uptake of recombinant glucocerebrosidases by blood monocytes from type 1 Gaucher disease patients is variable. Br. J. Haematol. 157, 274–277.10.1111/j.1365-2141.2011.08989.xSearch in Google Scholar
Berliner, L.J. (1976). Spin Labeling. Theory and Applications (New York, USA: Academic Press Inc.).10.1007/978-1-4613-0743-3Search in Google Scholar
Björkqvist, Y.J.E., Brewer, J., Bagatolli, L.A., Slotte, J.P., and Westerlund, B. (2009). Thermotropic behavior and lateral distribution of very long chain sphingolipids. Biochim. Biophys. Acta 1788, 1310–1320.10.1016/j.bbamem.2009.02.019Search in Google Scholar
Brady, R.O. (1977). Heritable catabolic and anabolic disorders of lipid metabolism. Metab. Clin. Exp. 26, 329–345.10.1016/0026-0495(77)90080-4Search in Google Scholar
de Almeida, R.F.M., Fedorov, A., and Prieto, M. (2003). Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys. J. 85, 2406–2416.10.1016/S0006-3495(03)74664-5Search in Google Scholar
Dulac, O., Lassonde, M., and Sarnat, H.B. (2013). Pediatric Neurology, Part III, Volume 113 (Edinburgh, UK; New York, USA: Elsevier).Search in Google Scholar
Futerman, A. H. (2006). Cellular pathology in Gaucher disease. In: Gaucher Disease, A. H. Futerman and A. Zimran, eds. (Boca Raton, FL, USA: CRC Press), pp. 97–108.10.1201/9781420005509.ch6Search in Google Scholar
Goker-Alpan, O., Hruska, K.S., Orvisky, E., Kishnani, P.S., Stubblefield, B.K., Schiffmann, R., and Sidransky, E. (2005). Divergent phenotypes in Gaucher disease implicate the role of modifiers. J. Med. Genet. 42, e37.10.1136/jmg.2004.028019Search in Google Scholar
Grant, C.W.M., Mehlhorn, I.E., Florio, E., and Barber, K.R. (1987). A long chain spin label for glycosphingolipid studies: transbilayer fatty acid interdigitation of lactosyl ceramide. Biochim. Biophys. Acta 902, 169–177.10.1016/0005-2736(87)90292-6Search in Google Scholar
Hein, L.K., Duplock, S., Hopwood, J.J., and Fuller, M. (2008). Lipid composition of microdomains is altered in a cell model of Gaucher disease. J. Lipid Res. 49, 1725–1734.10.1194/jlr.M800092-JLR200Search in Google Scholar PubMed PubMed Central
Horowitz, M., Elstein, D., Zimran, A., and Goker-Alpan, O. (2016). New directions in Gaucher disease. Hum. Mutat. 37, 1121–1136.10.1002/humu.23056Search in Google Scholar PubMed
Hruska, K.S., LaMarca, M.E., Scott, C.R., and Sidransky, E. (2008). Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum. Mutat. 29, 567–583.10.1002/humu.20676Search in Google Scholar
Ilan, Y., Elstein, D., and Zimran, A. (2009). Glucocerebroside: an evolutionary advantage for patients with Gaucher disease and a new immunomodulatory agent. Immunol. Cell Biol. 87, 514–524.10.1038/icb.2009.42Search in Google Scholar
Jardim, L.B., Villanueva, M.M., de Souza, C.F.M., and Netto, C.B.O. (2010). Clinical aspects of neuropathic lysosomal storage disorders. J. Inherit. Metab. Dis. 33, 315–329.10.1007/s10545-010-9079-5Search in Google Scholar
Jmoudiak, M. and Futerman, A.H. (2005). Gaucher disease: pathological mechanisms and modern management. Br. J. Haematol. 129, 178–188.10.1111/j.1365-2141.2004.05351.xSearch in Google Scholar
Kocherginsky, N.M. and Swartz, H.M. (1995). Nitroxide Spin Labels: Reactions in Biology and Chemistry (Boca Raton, FL, USA: CRC Press Inc.).Search in Google Scholar
Lavie, Y., Fiucci, G., and Liscovitch, M. (1998). Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J. Biol. Chem. 273, 32380–32383.10.1074/jbc.273.49.32380Search in Google Scholar
Maor, G., Cabasso, O., Krivoruk, O., Rodriguez, J., Steller, H., Segal, D., and Horowitz, M. (2016). The contribution of mutant GBA to the development of Parkinson disease in Drosophila. Hum. Mol. Genet. 25, 2712–2727.Search in Google Scholar
Maunula, S., Björkqvist, Y.J.E., Slotte, J.P., and Ramstedt, B. (2007). Differences in the domain forming properties of N-palmitoylated neutral glycosphingolipids in bilayer membranes. Biochim. Biophys. Acta 1768, 336–345.10.1016/j.bbamem.2006.09.003Search in Google Scholar
Miller, S.P.F., Zirzow, G.C., Doppelt, S.H., Brady, R.O., and Barton, N.W. (1996). Analysis of the lipids of normal and Gaucher bone marrow. J. Lab. Clin. Med. 127, 353–358.10.1016/S0022-2143(96)90183-3Search in Google Scholar
Nalls, M.A., Duran, R., Lopez, G., Kurzawa-Akanbi, M., McKeith, I.G., Chinnery, P.F., Morris, C.M., Theuns, J., Crosiers, D., Cras, P., et al. (2013). A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. J Am Med Assoc Neurol. 70, 727–735.10.1001/jamaneurol.2013.1925Search in Google Scholar PubMed PubMed Central
Pike, L.J. (2009). The challenge of lipid rafts. J. Lipid Res. 50, S323–S328.10.1194/jlr.R800040-JLR200Search in Google Scholar PubMed PubMed Central
Silva, L.C., de Almeida, R.F.M., Castro, B.M., Fedorov, A., and Prieto, M. (2007). Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys. J. 92, 502–516.10.1529/biophysj.106.091876Search in Google Scholar PubMed PubMed Central
Sklar, L.A. (1980). The partition of cis-parinaric acid and trans-parinaric acid among aqueous, fluid lipid, and solid lipid phases. Mol. Cell. Biochem. 32, 169–177.10.1007/BF00227444Search in Google Scholar
Sonnino, S., Mauri, L., Chigorno, V., and Prinetti, A. (2007). Gangliosides as components of lipid membrane domains. Glycobiology 17, 1R–13R.10.1093/glycob/cwl052Search in Google Scholar
Subczynski, W.K. and Kusumi, A. (2003). Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim. Biophys. Acta 1610, 231–243.10.1016/S0005-2736(03)00021-XSearch in Google Scholar
Tamargo, R.J., Velayati, A., Goldin, E., and Sidransky, E. (2012). The role of saposin C in Gaucher disease. Mol. Genet. Metab. 106, 257–263.10.1016/j.ymgme.2012.04.024Search in Google Scholar PubMed PubMed Central
Tekoah, Y., Tzaban, S., Kizhner, T., Hainrichson, M., Gantman, A., Golembo, M., Aviezer, D., and Shaaltiel, Y. (2013). Glycosylation and functionality of recombinant β-glucocerebrosidase from various production systems. Biosci. Rep. 33, 771–781.10.1042/BSR20130081Search in Google Scholar PubMed PubMed Central
van Meer, G., Wolthoorn, J., and Degroote, S. (2003). The fate and function of glycosphingolipid glucosylceramide. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 869–873.10.1098/rstb.2003.1266Search in Google Scholar PubMed PubMed Central
Varela, A.R.P., Gonçalves da Silva, A.M.P.S., Fedorov, A., Futerman, A.H., Prieto, M., and Silva, L.C. (2013). Effect of glucosylceramide on the biophysical properties of fluid membranes. Biochim. Biophys. Acta 1828, 1122–1130.10.1016/j.bbamem.2012.11.018Search in Google Scholar PubMed
Varela, A.R.P., Couto, A.S., Fedorov, A., Futerman, A.H., Prieto, M., and Silva, L.C. (2016). Glucosylceramide reorganizes cholesterol-containing domains in a fluid phospholipid membrane. Biophys. J. 110, 612–622.10.1016/j.bpj.2015.12.019Search in Google Scholar PubMed PubMed Central
Varela, A.R.P., Ventura, A.E., Carreira, A.C., Fedorov, A., Futerman, A.H., Prieto, M., and Silva, L.C. (2017). Pathological levels of glucosylceramide change the biophysical properties of artificial and cell membranes. Phys. Chem. Chem. Phys. 19, 340–346.10.1039/C6CP07227ESearch in Google Scholar
Zhang, C.K., Stein, P.B., Liu, J., Wang, Z., Yang, R., Cho, J.H., Gregersen, P.K., Aerts, J.M.F.G., Zhao, H., Pastores, G.M., et al. (2012). Genome-wide association study of N370S homozygous Gaucher disease reveals the candidacy of CLN8 gene as a genetic modifier contributing to extreme phenotypic variation. Am. J. Hematol. 87, 377–383.10.1002/ajh.23118Search in Google Scholar PubMed PubMed Central
Zimran, A. and Elstein, D. (2015). Gaucher disease and related lysosomal storage diseases. In: Williams Hematology, 9th Edition, K. Kaushansky, M.A. Lichtman, J. Prchal, M.M. Levi, O. Press, L. Burns, and M. Caligiuri, eds. (New York: McGraw-Hill Education/Medical), pp. 1121–1136.Search in Google Scholar
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/hsz-2017-0241).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells
- Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia
- Research Articles/Short Communications
- Protein Structure and Function
- CRISPR/Cas9-mediated modification of the extreme C-terminus impairs PDGF-stimulated activity of Duox2
- Membranes, Lipids, Glycobiology
- Changes of the peripheral blood mononuclear cells membrane fluidity from type 1 Gaucher disease patients: an electron paramagnetic resonance study
- Molecular Medicine
- Aβ42 oligomers impair the bioenergetic activity in hippocampal synaptosomes derived from APP-KO mice
- Cell Biology and Signaling
- Molecular determinants of Drosophila immunophilin FKBP39 nuclear localization
- The effect of lncRNA HOTAIR on chemoresistance of ovarian cancer through regulation of HOXA7
- Novel Techniques
- Determination of selenium during pathogenesis of hepatic fibrosis employing hydride generation and inductively coupled plasma mass spectrometry
Articles in the same Issue
- Frontmatter
- Reviews
- Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells
- Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia
- Research Articles/Short Communications
- Protein Structure and Function
- CRISPR/Cas9-mediated modification of the extreme C-terminus impairs PDGF-stimulated activity of Duox2
- Membranes, Lipids, Glycobiology
- Changes of the peripheral blood mononuclear cells membrane fluidity from type 1 Gaucher disease patients: an electron paramagnetic resonance study
- Molecular Medicine
- Aβ42 oligomers impair the bioenergetic activity in hippocampal synaptosomes derived from APP-KO mice
- Cell Biology and Signaling
- Molecular determinants of Drosophila immunophilin FKBP39 nuclear localization
- The effect of lncRNA HOTAIR on chemoresistance of ovarian cancer through regulation of HOXA7
- Novel Techniques
- Determination of selenium during pathogenesis of hepatic fibrosis employing hydride generation and inductively coupled plasma mass spectrometry