Startseite Strong pH dependence of coupling efficiency of the Na+ – translocating NADH:quinone oxidoreductase (Na+-NQR) of Vibrio cholerae
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Strong pH dependence of coupling efficiency of the Na+ – translocating NADH:quinone oxidoreductase (Na+-NQR) of Vibrio cholerae

  • Charlotte Toulouse , Björn Claussen , Valentin Muras , Günter Fritz EMAIL logo und Julia Steuber EMAIL logo
Veröffentlicht/Copyright: 16. September 2016

Abstract

The Na+-translocating NADH:quinone oxidoreductase (NQR) is the entry site for electrons into the respiratory chain of Vibrio cholerae, the causative agent of cholera disease. NQR couples the electron transfer from NADH to ubiquinone to the translocation of sodium ions across the membrane. We investigated the pH dependence of electron transfer and generation of a transmembrane voltage (ΔΨ) by NQR reconstituted in liposomes with Na+ or Li+ as coupling cation. ΔΨ formation was followed with the voltage-sensitive dye oxonol. With Na+, ΔΨ was barely influenced by pH (6.5–8.5), while Q reduction activity exhibited a maximum at pH 7.5–8.0. With Li+, ΔΨ was generally lower, and the pH profile of electron transfer activity did not reveal a pronounced maximum. We conclude that the coupling efficiency of NQR is influenced by the nature of the transported cation, and by the concentration of protons. The 3D structure of NQR reveals a transmembrane channel in subunit NqrB. It is proposed that partial uncoupling of the NQR observed with the smaller Li+, or with Na+ at pH 7.5–8.0, is caused by the backflow of the coupling cation through the channel in NqrB.

Acknowledgments

This work was supported by contract research of the Baden-Württemberg Stiftung, Forschungsprogramm P-LS-Meth/4 (to J. S. and G.F.), by Deutsche Forschungsgemeinschaft grant FR 1321/3-1 (to J.S.), and a fellowship from the Carl Zeiss Foundation (to B.C.).

References

Apell, H.J. and Bersch, B. (1987). Oxonol VI as an optical indicator for membrane potentials in lipid vesicles. Biochim. Biophys. Acta. 903, 480–494.10.1016/0005-2736(87)90055-1Suche in Google Scholar PubMed

Barquera, B., Hellwig, P., Zhou, W., Morgan, J.E., Häse, C.C., Gosink, K.K., Nilges, M., Bruesehoff, P.J., Roth A, Lancaster CR, et al. (2002). Purification and characterization of the recombinant Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. Biochemistry 41, 3781–3789.10.1021/bi011873oSuche in Google Scholar PubMed

Bogachev, A.V., Murtazina, R.A., and Skulachev, V.P. (1997). The Na+/e stoichiometry of the Na+-motive NADH:quinone oxidoreductase in Vibrio alginolyticus. FEBS Lett. 409, 475–477.10.1016/S0014-5793(97)00536-XSuche in Google Scholar

Bogachev, A.V., Bertsova, Y.V., Barquera, B., and Verkhovsky, M.I. (2001). Sodium-dependent steps in the redox reactions of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi. Biochemistry 40, 7318–7323.10.1021/bi002545bSuche in Google Scholar PubMed

Casutt, M.S., Huber, T., Brunisholz, R., Tao, M., Fritz, G., and Steuber, J. (2010). Localization and function of the membrane-bound riboflavin in the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. J. Biol. Chem. 285, 27088–27099.10.1074/jbc.M109.071126Suche in Google Scholar PubMed PubMed Central

Dwivedi, M., Sukenik, S., Friedler, A., and Padan, E. (2016). The Ec-NhaA antiporter switches from antagonistic to synergistic antiport upon a single point mutation. Sci. Rep. 6, 23339.10.1038/srep23339Suche in Google Scholar PubMed PubMed Central

Fritz, G. and Steuber, J. (2016). Sodium as coupling cation in respiratory energy conversion. Met. Ions Life Sci. 16, 349–390.10.1007/978-3-319-21756-7_11Suche in Google Scholar PubMed

Glynn, I.M. and Karlish, S.J. (1990). Occluded cations in active transport. Annu. Rev. Biochem. 59, 171–205.10.1146/annurev.bi.59.070190.001131Suche in Google Scholar PubMed

Gouaux, E. and MacKinnon, R. (2005). Principles of selective ion transport in channels and pumps. Science 310, 1461–1465.10.1126/science.1113666Suche in Google Scholar PubMed

Griffitt, K.J. and Grimes, D.J. (2013). Abundance and distribution of Vibrio cholerae, V. parahaemolyticus, and V. vulnificus following a major freshwater intrusion into the Mississippi Sound. Microb. Ecol. 65, 578–583.10.1007/s00248-013-0203-6Suche in Google Scholar PubMed

Häse, C.C. and Barquera, B. (2001). Role of sodium bioenergetics in Vibrio cholerae. Biochim. Biophys. Acta. 1505, 169–178.10.1016/S0005-2728(00)00286-3Suche in Google Scholar

Juárez, O., Athearn, K., Gillespie, P., and Barquera, B. (2009a). Acid Residues in the Transmembrane helices of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae involved in sodium translocation. Biochemistry 48, 9516–9524.10.1021/bi900845ySuche in Google Scholar PubMed PubMed Central

Juárez, O., Morgan, J.E., and Barquera, B. (2009b). The electron transfer pathway of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J. Biol. Chem. 284, 8963–8972.10.1074/jbc.M809395200Suche in Google Scholar PubMed PubMed Central

Juárez, O., Morgan, J.E., Nilges, M.J., and Barquera, B. (2010). Energy transducing redox steps of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. Proc. Nat. Acad. Sci. USA 107, 12505–12510.10.1073/pnas.1002866107Suche in Google Scholar PubMed PubMed Central

Juárez, O., Shea, M.E., Makhatadze, G.I., and Barquera, B. (2011). The role and specificity of the catalytic and regulatory cation-binding sites of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J. Biol. Chem. 286, 26383–26390.10.1074/jbc.M111.257873Suche in Google Scholar PubMed PubMed Central

Juárez, O., Neehaul, Y., Turk, E., Chahboun, N., DeMicco, J.M., Hellwig, P., and Barquera, B. (2012). The role of glycine residues 140 and 141 of subunit B in the functional ubiquinone binding site of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J. Biol. Chem. 287, 25678–25685.10.1074/jbc.M112.366088Suche in Google Scholar PubMed PubMed Central

Kaim, G., Wehrle, F., Gerike, U., and Dimroth, P. (1997). Molecular basis for the coupling ion selectivity of F1F0 ATP synthases: probing the liganding groups for Na+ and Li+ in the c subunit of the ATP synthase from Propionigenium modestum. Biochemistry 36, 9185–9194.10.1021/bi970831qSuche in Google Scholar PubMed

Kojima, S., Yamamoto, K., Kawagishi, I., and Homma, M. (1999). The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J. Bacteriol. 181, 1927–1930.10.1128/JB.181.6.1927-1930.1999Suche in Google Scholar PubMed PubMed Central

Lin, P.C., Türk, K., Häse, C.C., Fritz, G., and Steuber, J. (2007). Quinone reduction by the Na+-translocating NADH dehydrogenase promotes extracellular superoxide production in Vibrio cholerae. J. Bacteriol. 189, 3902–3908.10.1128/JB.01651-06Suche in Google Scholar PubMed PubMed Central

Muras, V., Claussen, B., Karuppasamy, M., Schaffitzel, C., and Steuber, J. (2014). Continuous fluorescence-based measurement of redox-driven sodium ion translocation. Anal. Biochem. 459, 53–55.10.1016/j.ab.2014.05.012Suche in Google Scholar PubMed

Nedielkov, R., Steffen, W., Steuber, J., and Möller, H.M. (2013). NMR reveals double occupancy of quinone-type ligands in the catalytic quinone binding site of the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. J. Biol. Chem. 288, 30597–30606.10.1074/jbc.M112.435750Suche in Google Scholar PubMed PubMed Central

Neehaul, Y., Juárez, O., Barquera, B., and Hellwig, P. (2013). Infrared spectroscopic evidence of a redox-dependent conformational change involving ion binding residue NqrB-D397 in the Na+ -pumping NADH:quinone oxidoreductase from Vibrio cholerae. Biochemistry 52, 3085–3093.10.1021/bi4000386Suche in Google Scholar PubMed

Pfenninger-Li, X.D., Albracht, S.P., van Belzen, R., and Dimroth, P. (1996). NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump. Biochemistry 35, 6233–6242.10.1021/bi953032lSuche in Google Scholar PubMed

Shani, M., Goldschleger, R., and Karlish, S.J. (1987). Rb+ occlusion in renal (Na++K+)-ATPase characterized with a simple manual assay. Biochim. Biophys. Acta. 904, 13–21.10.1016/0005-2736(87)90081-2Suche in Google Scholar PubMed

Shea, M.E., Juárez, O., Cho, J., and Barquera, B. (2013). Aspartic acid 397 in subunit B of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae forms part of a sodium-binding site, is involved in cation selectivity, and affects cation-binding site cooperativity. J. Biol. Chem. 288, 31241–31249.10.1074/jbc.M113.510776Suche in Google Scholar PubMed PubMed Central

Shea, M.E., Mezic, K.G., Juárez, O., and Barquera, B. (2015). A mutation in Na+ -NQR uncouples electron flow from Na+ translocation in the presence of K+. Biochemistry 54, 490–496.10.1021/bi501266eSuche in Google Scholar PubMed PubMed Central

Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, M.D., Fujimoto, E.K., Goeke, N.M., Olson BJ, Klenk DC. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.10.1016/0003-2697(85)90442-7Suche in Google Scholar PubMed

Steuber, J., Halang, P., Vorburger, T., Steffen, W., Vohl, G., and Fritz, G. (2014a). Central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) in sodium bioenergetics of Vibrio cholerae. Biol. Chem. 395, 1389–1399.10.1515/hsz-2014-0204Suche in Google Scholar PubMed

Steuber, J., Vohl, G., Casutt, M.S., Vorburger, T., Diederichs, K., and Fritz, G. (2014b). Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase. Nature 516, 62–67.10.1038/nature14003Suche in Google Scholar PubMed

Strickland, M., Juárez, O., Neehaul, Y., Cook, D.A., Barquera, B., and Hellwig, P. (2014). The conformational changes induced by ubiquinone binding in the Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) are kinetically controlled by conserved glycines 140 and 141 of the NqrB subunit. J. Biol. Chem. 289, 23723–23733.10.1074/jbc.M114.574640Suche in Google Scholar PubMed PubMed Central

Tao, M., Casutt, M.S., Fritz, G., and Steuber, J. (2008). Oxidant-induced formation of a neutral flavosemiquinone in the Na+-translocating NADH:Quinone oxidoreductase (Na+-NQR) from Vibrio cholerae. Biochim. Biophys. Acta. 1777, 696–702.10.1016/j.bbabio.2008.04.006Suche in Google Scholar PubMed

Tuz, K., Mezic, K.G., Xu, T., Barquera, B., and Juárez, O. (2015). The kinetic reaction mechanism of the Vibrio cholerae sodium-dependent NADH Dehydrogenase. J. Biol. Chem. 290, 20009–20021.10.1074/jbc.M115.658773Suche in Google Scholar PubMed PubMed Central

Verkhovsky, M.I. and Bogachev, A.V. (2010). Sodium-translocating NADH:quinone oxidoreductase as a redox-driven ion pump. Biochim. Biophys. Acta. 1797, 738–746.10.1016/j.bbabio.2009.12.020Suche in Google Scholar PubMed

Verkhovsky, M.I., Bogachev, A.V., Pivtsov, A.V., Bertsova, Y.V., Fedin, M.V., Bloch, D.A., and Kulik, L.V. (2012). Sodium-Dependent movement of covalently bound FMN residue(s) in Na+-translocating NADH:quinone oxidoreductase. Biochemistry 51, 5414–5421.10.1021/bi300322nSuche in Google Scholar PubMed

Vimont, S. and Berche, P. (2000). NhaA, an Na+/H+ antiporter involved in environmental survival of Vibrio cholerae. J. Bacteriol. 182, 2937–2944.10.1128/JB.182.10.2937-2944.2000Suche in Google Scholar PubMed PubMed Central

Vorburger, T., Nedielkov, R., Brosig, A., Bok, E., Schunke, E., Steffen, W., Mayer, S., Götz, F., Möller, H.M., Steuber, J. (2016). Role of the Na+ -translocating NADH:quinone oxidoreductase in voltage generation and Na+ extrusion in Vibrio cholerae. Biochim. Biophys. Acta. 1857, 473–482.10.1016/j.bbabio.2015.12.010Suche in Google Scholar PubMed

Received: 2016-6-19
Accepted: 2016-9-6
Published Online: 2016-9-16
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0238/html
Button zum nach oben scrollen