Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors
Abstract
Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2′ led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.
Acknowledgments
This work was supported by the Australian National Health and Medical Research Council (NHMRC) (grant 1059410). J.S. is a NHMRC Early Career Fellow (grant 1069819).
References
Abbenante, G., Leung, D., Bond, T., and Fairlie, D.P. (2000). An efficient Fmoc strategy for the rapid synthesis of peptide para-nitroanilides. Lett. Pept. Sci. 7, 347–351.10.1023/A:1013016323676Suche in Google Scholar
Bonnart, C., Deraison, C., Lacroix, M., Uchida, Y., Besson, C., Robin, A., Briot, A., Gonthier, M., Lamant, L., Dubus, P., et al. (2010). Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J. Clin. Invest. 120, 871–882.10.1172/JCI41440Suche in Google Scholar PubMed PubMed Central
Borgono, C.A., Gavigan, J.A., Alves, J., Bowles, B., Harris, J.L., Sotiropoulou, G., and Diamandis, E.P. (2007a). Defining the extended substrate specificity of kallikrein 1-related peptidases. Biol. Chem. 388, 1215–1225.10.1515/BC.2007.124Suche in Google Scholar PubMed
Borgono, C.A., Michael, I.P., Shaw, J.L., Luo, L.Y., Ghosh, M.C., Soosaipillai, A., Grass, L., Katsaros, D., and Diamandis, E.P. (2007b). Expression and functional characterization of the cancer-related serine protease, human tissue kallikrein 14. J. Biol. Chem. 282, 2405–2422.10.1074/jbc.M608348200Suche in Google Scholar PubMed
Brannstrom, K., Ohman, A., von Pawel Rammingen, U., Olofsson, A., and Brattsand, M. (2012). Characterization of SPINK9, a KLK5-specific inhibitor expressed in palmo-plantar epidermis. Biol. Chem. 393, 369–377.10.1515/hsz-2011-0238Suche in Google Scholar PubMed
Brattsand, M. and Egelrud, T. (1999). Purification, molecular cloning, and expression of a human stratum corneum trypsin-like serine protease with possible function in desquamation. J. Biol. Chem. 274, 30033–30040.10.1074/jbc.274.42.30033Suche in Google Scholar PubMed
Brattsand, M., Stefansson, K., Lundh, C., Haasum, Y., and Egelrud, T. (2005). A proteolytic cascade of kallikreins in the stratum corneum. J. Invest. Dermatol. 124, 198–203.10.1111/j.0022-202X.2004.23547.xSuche in Google Scholar PubMed
Brattsand, M., Stefansson, K., Hubiche, T., Nilsson, S.K., and Egelrud, T. (2009). SPINK9: a selective, skin-specific Kazal-type serine protease inhibitor. J. Invest. Dermatol. 129, 1656–1665.10.1038/jid.2008.448Suche in Google Scholar PubMed
Briot, A., Deraison, C., Lacroix, M., Bonnart, C., Robin, A., Besson, C., Dubus, P., and Hovnanian, A. (2009). Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J. Exp. Med. 206, 1135–1147.10.1084/jem.20082242Suche in Google Scholar PubMed PubMed Central
Caubet, C., Jonca, N., Brattsand, M., Guerrin, M., Bernard, D., Schmidt, R., Egelrud, T., Simon, M., and Serre, G. (2004). Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/KLK7/hK7. J. Invest. Dermatol. 122, 1235–1244.10.1111/j.0022-202X.2004.22512.xSuche in Google Scholar PubMed
de Veer, S.J., Swedberg, J.E., Parker, E.A., and Harris, J.M. (2012). Non-combinatorial library screening reveals subsite cooperativity and identifies new high efficiency substrates for kallikrein-related peptidase 14. Biol. Chem. 393, 331–341.10.1515/bc-2011-250Suche in Google Scholar PubMed
de Veer, S.J., Furio, L., Harris, J.M., and Hovnanian, A. (2014). Proteases: common culprits in human skin disorders. Trends Mol. Med. 20, 166–178.10.1016/j.molmed.2013.11.005Suche in Google Scholar PubMed
de Veer, S.J., Swedberg, J.E., Akcan, M., Rosengren, K.J., Brattsand, M., Craik, D.J., and Harris, J.M. (2015a). Engineered protease inhibitors based on sunflower trypsin inhibitor-1 (SFTI-1) provide insights into the role of sequence and conformation in Laskowski mechanism inhibition. Biochem. J. 469, 243–253.10.1042/BJ20150412Suche in Google Scholar PubMed
de Veer, S.J., Wang, C.K., Harris, J.M., Craik, D.J., and Swedberg, J.E. (2015b). Improving the selectivity of engineered protease inhibitors: optimizing the P2 prime residue using a versatile cyclic peptide library. J. Med. Chem. 58, 8257–8268.10.1021/acs.jmedchem.5b01148Suche in Google Scholar PubMed
Debela, M., Magdolen, V., Schechter, N., Valachova, M., Lottspeich, F., Craik, C.S., Choe, Y., Bode, W., and Goettig, P. (2006). Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. J. Biol. Chem. 281, 25678–25688.10.1074/jbc.M602372200Suche in Google Scholar PubMed
Deraison, C., Bonnart, C., Lopez, F., Besson, C., Robinson, R., Jayakumar, A., Wagberg, F., Brattsand, M., Hachem, J.P., Leonardsson, G., et al. (2007). LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol. Biol. Cell 18, 3607–3619.10.1091/mbc.e07-02-0124Suche in Google Scholar PubMed PubMed Central
Descargues, P., Deraison, C., Prost, C., Fraitag, S., Mazereeuw-Hautier, J., D’Alessio, M., Ishida-Yamamoto, A., Bodemer, C., Zambruno, G., and Hovnanian, A. (2006). Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome. J. Invest. Dermatol. 126, 1622–1632.10.1038/sj.jid.5700284Suche in Google Scholar PubMed
Dorn, J., Magdolen, V., Gkazepis, A., Gerte, T., Harlozinska, A., Sedlaczek, P., Diamandis, E.P., Schuster, T., Harbeck, N., Kiechle, M., et al. (2011). Circulating biomarker tissue kallikrein-related peptidase KLK5 impacts ovarian cancer patients’ survival. Ann. Oncol. 22, 1783–1790.10.1093/annonc/mdq701Suche in Google Scholar PubMed
Eissa, A., Amodeo, V., Smith, C.R., and Diamandis, E.P. (2011). Kallikrein-related peptidase-8 (KLK8) is an active serine protease in human epidermis and sweat and is involved in a skin barrier proteolytic cascade. J. Biol. Chem. 286, 687–706.10.1074/jbc.M110.125310Suche in Google Scholar PubMed PubMed Central
Ekholm, I.E., Brattsand, M., and Egelrud, T. (2000). Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process? J. Invest. Dermatol. 114, 56–63.10.1046/j.1523-1747.2000.00820.xSuche in Google Scholar PubMed
Fortugno, P., Bresciani, A., Paolini, C., Pazzagli, C., El Hachem, M., D’Alessio, M., and Zambruno, G. (2011). Proteolytic activation cascade of the Netherton syndrome-defective protein, LEKTI, in the epidermis: implications for skin homeostasis. J. Invest. Dermatol. 131, 2223–2232.10.1038/jid.2011.174Suche in Google Scholar
Furio, L., de Veer, S., Jaillet, M., Briot, A., Robin, A., Deraison, C., and Hovnanian, A. (2014). Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of Netherton syndrome. J. Exp. Med. 211, 499–513.10.1084/jem.20131797Suche in Google Scholar
Furio, L., Pampalakis, G., Michael, I.P., Nagy, A., Sotiropoulou, G., and Hovnanian, A. (2015). KLK5 inactivation reverses cutaneous hallmarks of Netherton Syndrome. PLoS Genet. 11, e1005389.10.1371/journal.pgen.1005389Suche in Google Scholar
Graf, L., Jancso, A., Szilagyi, L., Hegyi, G., Pinter, K., Naray-Szabo, G., Hepp, J., Medzihradszky, K., and Rutter, W.J. (1988). Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc. Natl. Acad. Sci. USA 85, 4961–4965.10.1073/pnas.85.14.4961Suche in Google Scholar
Guex, N. and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.10.1002/elps.1150181505Suche in Google Scholar
Hedstrom, L., Szilagyi, L., and Rutter, W.J. (1992). Converting trypsin to chymotrypsin: the role of surface loops. Science 255, 1249–1253.10.1126/science.1546324Suche in Google Scholar
Hollenberg, M.D. (2014). KLKs and their hormone-like signaling actions: a new life for the PSA-KLK family. Biol. Chem. 395, 915–929.10.1515/hsz-2014-0123Suche in Google Scholar
Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–38.10.1016/0263-7855(96)00018-5Suche in Google Scholar
Jiang, R., Shi, Z., Johnson, J.J., Liu, Y., and Stack, M.S. (2010). Kallikrein-5 promotes cleavage of desmoglein-1 and loss of cell-cell cohesion in oral squamous cell carcinoma. J. Biol. Chem. 286, 9127–9135.10.32469/10355/9528Suche in Google Scholar
Kalinska, M., Meyer-Hoffert, U., Kantyka, T., and Potempa, J. (2016). Kallikreins – the melting pot of activity and function. Biochimie 122, 270–282.10.1016/j.biochi.2015.09.023Suche in Google Scholar PubMed PubMed Central
Komatsu, N., Saijoh, K., Kuk, C., Liu, A.C., Khan, S., Shirasaki, F., Takehara, K., and Diamandis, E.P. (2007). Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp. Dermatol. 16, 513–519.10.1111/j.1600-0625.2007.00562.xSuche in Google Scholar PubMed
Kriegel, A.J., Liu, Y., Cohen, B., Usa, K., Liu, Y., and Liang, M. (2012). MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol. Genomics 44, 259–267.10.1152/physiolgenomics.00173.2011Suche in Google Scholar PubMed PubMed Central
Krieger, E., Koraimann, G., and Vriend, G. (2002). Increasing the precision of comparative models with YASARA NOVA–a self-parameterizing force field. Proteins 47, 393–402.10.1002/prot.10104Suche in Google Scholar PubMed
Kubo, A., Nagao, K., and Amagai, M. (2012). Epidermal barrier dysfunction and cutaneous sensitization in atopic diseases. J. Clin. Invest. 122, 440–447.10.1172/JCI57416Suche in Google Scholar PubMed PubMed Central
Lesner, A., Legowska, A., Wysocka, M., and Rolka, K. (2011). Sunflower trypsin inhibitor 1 as a molecular scaffold for drug discovery. Curr. Pharm. Des. 17, 4308–4317.10.2174/138161211798999393Suche in Google Scholar PubMed
Li, X., Liu, J., Wang, Y., Zhang, L., Ning, L., and Feng, Y. (2009). Parallel underexpression of kallikrein 5 and kallikrein 7 mRNA in breast malignancies. Cancer Sci. 100, 601–607.10.1111/j.1349-7006.2009.01090.xSuche in Google Scholar PubMed
Loessner, D., Quent, V.M., Kraemer, J., Weber, E.C., Hutmacher, D.W., Magdolen, V., and Clements, J.A. (2012). Combined expression of KLK4, KLK5, KLK6, and KLK7 by ovarian cancer cells leads to decreased adhesion and paclitaxel-induced chemoresistance. Gynecol. Oncol. 127, 569–578.10.1016/j.ygyno.2012.09.001Suche in Google Scholar PubMed
Meyer-Hoffert, U., Wu, Z., and Schroder, J.M. (2009). Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor. PLoS One 4, e4372.10.1371/journal.pone.0004372Suche in Google Scholar PubMed PubMed Central
Meyer-Hoffert, U., Wu, Z., Kantyka, T., Fischer, J., Latendorf, T., Hansmann, B., Bartels, J., He, Y., Glaser, R., and Schroder, J.M. (2010). Isolation of SPINK6 in human skin: selective inhibitor of kallikrein-related peptidases. J. Biol. Chem. 285, 32174–32181.10.1074/jbc.M109.091850Suche in Google Scholar PubMed PubMed Central
Michael, I.P., Pampalakis, G., Mikolajczyk, S.D., Malm, J., Sotiropoulou, G., and Diamandis, E.P. (2006). Human tissue kallikrein 5 is a member of a proteolytic cascade pathway involved in seminal clot liquefaction and potentially in prostate cancer progression. J. Biol. Chem. 281, 12743–12750.10.1074/jbc.M600326200Suche in Google Scholar PubMed
Ohler, A., Debela, M., Wagner, S., Magdolen, V., and Becker-Pauly, C. (2010). Analyzing the protease web in skin: meprin metalloproteases are activated specifically by KLK4, 5 and 8 vice versa leading to processing of proKLK7 thereby triggering its activation. Biol. Chem. 391, 455–460.10.1515/bc.2010.023Suche in Google Scholar PubMed
Oikonomopoulou, K., Hansen, K.K., Saifeddine, M., Tea, I., Blaber, M., Blaber, S.I., Scarisbrick, I., Andrade-Gordon, P., Cottrell, G.S., Bunnett, N.W., et al. (2006). Proteinase-activated receptors, targets for kallikrein signaling. J. Biol. Chem. 281, 32095–32112.10.1074/jbc.M513138200Suche in Google Scholar PubMed
Pampalakis, G., Obasuyi, O., Papadodima, O., Chatziioannou, A., Zoumpourlis, V., and Sotiropoulou, G. (2014). The KLK5 protease suppresses breast cancer by repressing the mevalonate pathway. Oncotarget 5, 2390–2403.10.18632/oncotarget.1235Suche in Google Scholar PubMed PubMed Central
Perona, J.J., Hedstrom, L., Rutter, W.J., and Fletterick, R.J. (1995). Structural origins of substrate discrimination in trypsin and chymotrypsin. Biochemistry 34, 1489–1499.10.1021/bi00005a004Suche in Google Scholar PubMed
Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K. (2005). Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.10.1002/jcc.20289Suche in Google Scholar PubMed PubMed Central
Prezas, P., Arlt, M.J., Viktorov, P., Soosaipillai, A., Holzscheiter, L., Schmitt, M., Talieri, M., Diamandis, E.P., Kruger, A., and Magdolen, V. (2006). Overexpression of the human tissue kallikrein genes KLK4, 5, 6, and 7 increases the malignant phenotype of ovarian cancer cells. Biol. Chem. 387, 807–811.10.1515/BC.2006.102Suche in Google Scholar PubMed
Ramsay, A.J., Dong, Y., Hunt, M.L., Linn, M., Samaratunga, H., Clements, J.A., and Hooper, J.D. (2008). Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). J. Biol. Chem. 283, 12293–12304.10.1074/jbc.M709493200Suche in Google Scholar PubMed
Sakabe, J., Yamamoto, M., Hirakawa, S., Motoyama, A., Ohta, I., Tatsuno, K., Ito, T., Kabashima, K., Hibino, T., and Tokura, Y. (2013). Kallikrein-related peptidase 5 functions in proteolytic processing of profilaggrin in cultured human keratinocytes. J. Biol. Chem. 288, 17179–17189.10.1074/jbc.M113.476820Suche in Google Scholar PubMed PubMed Central
Stefansson, K., Brattsand, M., Roosterman, D., Kempkes, C., Bocheva, G., Steinhoff, M., and Egelrud, T. (2008). Activation of proteinase-activated receptor-2 by human kallikrein-related peptidases. J. Invest. Dermatol. 128, 18–25.10.1038/sj.jid.5700965Suche in Google Scholar PubMed
Swedberg, J.E. and Harris, J.M. (2011). Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors. Biochemistry 50, 8454–8462.10.1021/bi201203ySuche in Google Scholar PubMed
Swedberg, J.E., Nigon, L.V., Reid, J.C., de Veer, S.J., Walpole, C.M., Stephens, C.R., Walsh, T.P., Takayama, T.K., Hooper, J.D., Clements, J.A., et al. (2009). Substrate-guided design of a potent and selective kallikrein-related peptidase inhibitor for kallikrein 4. Chem. Biol. 16, 633–643.10.1016/j.chembiol.2009.05.008Suche in Google Scholar PubMed
Swedberg, J.E., de Veer, S.J., Sit, K.C., Reboul, C.F., Buckle, A.M., and Harris, J.M. (2011). Mastering the canonical loop of serine protease inhibitors: enhancing potency by optimising the internal hydrogen bond network. PLoS One 6, e19302.10.1371/journal.pone.0019302Suche in Google Scholar PubMed PubMed Central
Tan, X., Soualmia, F., Furio, L., Renard, J.F., Kempen, I., Qin, L., Pagano, M., Pirotte, B., El Amri, C., Hovnanian, A., et al. (2015). Toward the first class of suicide inhibitors of kallikreins involved in skin diseases. J. Med. Chem. 58, 598–612.10.1021/jm500988dSuche in Google Scholar PubMed
Werle, E., Götze, W., and Kappler, A. (1937). Über die Wirkung des Kallikreins auf den isolierten Darm und über eine neue darmkontrahierende Substanz. Biochem. Z. 289, 217–233.Suche in Google Scholar
Yamasaki, K., Schauber, J., Coda, A., Lin, H., Dorschner, R.A., Schechter, N.M., Bonnart, C., Descargues, P., Hovnanian, A., and Gallo, R.L. (2006). Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J. 20, 2068–2080.10.1096/fj.06-6075comSuche in Google Scholar PubMed
Yamasaki, K., Di Nardo, A., Bardan, A., Murakami, M., Ohtake, T., Coda, A., Dorschner, R.A., Bonnart, C., Descargues, P., Hovnanian, A., et al. (2007). Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat. Med. 13, 975–980.10.1038/nm1616Suche in Google Scholar PubMed
Yousef, G.M. and Diamandis, E.P. (1999). The new kallikrein-like gene, KLK-L2. Molecular characterization, mapping, tissue expression, and hormonal regulation. J. Biol. Chem. 274, 37511–37516.10.1074/jbc.274.53.37511Suche in Google Scholar PubMed
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: remodelling the KLK landscape down under
- HIGHLIGHT: 6TH INTERNATIONAL SYMPOSIUM ON KALLIKREINS AND KALLIKREIN-RELATED PEPTIDASES
- Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications
- Mechanistic insight from murine models of Netherton syndrome
- Development of molecules stimulating the activity of KLK3 – an update
- Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors
- Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10
- Clinical relevance of kallikrein-related peptidase 6 (KLK6) and 8 (KLK8) mRNA expression in advanced serous ovarian cancer
- Kallikrein-related peptidase 6 exacerbates disease in an autoimmune model of multiple sclerosis
- A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene
- Therapeutic modulation of tissue kallikrein expression
- In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B
- A computational analysis of the genetic and transcript diversity at the kallikrein locus
- Reviews
- Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome
- The power, pitfalls and potential of the nanodisc system for NMR-based studies
- Research Articles/Short Communications
- Cell Biology and Signaling
- Synergistic induction of cardiomyocyte differentiation from human bone marrow mesenchymal stem cells by interleukin 1β and 5-azacytidine
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: remodelling the KLK landscape down under
- HIGHLIGHT: 6TH INTERNATIONAL SYMPOSIUM ON KALLIKREINS AND KALLIKREIN-RELATED PEPTIDASES
- Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications
- Mechanistic insight from murine models of Netherton syndrome
- Development of molecules stimulating the activity of KLK3 – an update
- Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors
- Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10
- Clinical relevance of kallikrein-related peptidase 6 (KLK6) and 8 (KLK8) mRNA expression in advanced serous ovarian cancer
- Kallikrein-related peptidase 6 exacerbates disease in an autoimmune model of multiple sclerosis
- A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene
- Therapeutic modulation of tissue kallikrein expression
- In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B
- A computational analysis of the genetic and transcript diversity at the kallikrein locus
- Reviews
- Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome
- The power, pitfalls and potential of the nanodisc system for NMR-based studies
- Research Articles/Short Communications
- Cell Biology and Signaling
- Synergistic induction of cardiomyocyte differentiation from human bone marrow mesenchymal stem cells by interleukin 1β and 5-azacytidine