Abstract
The kallikrein kinin system has cardioprotective actions and mediates in part the cardioprotection produced by angiotensin converting enzyme inhibitors and angiotensin type 1 receptor blockers. Additional approaches to exploit the cardioprotective effects of the kallikrein kinin system include the administration of tissue kallikrein and kinin receptor agonists. The renin inhibitor aliskiren was recently shown to increase cardiac tissue kallikrein expression and bradykinin levels, and to reduce myocardial ischemia-reperfusion injury by bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanisms. Thus, aliskiren represents a prototype drug for the modulation of tissue kallikrein expression for therapeutic benefit.
Acknowledgments
St. Vincent’s Institute of Medical Research is supported in part by the Victorian Government’s Operational Infrastructure Support Program.
References
Ashley, P.L. and MacDonald, R.J. (1985). Tissue-specific expression of kallikrein-related genes in the rat. Biochemistry 24, 4520–4527.10.1021/bi00338a006Suche in Google Scholar PubMed
Campbell, D.J., Krum, H., and Esler, M.D. (2005). Losartan increases bradykinin levels in hypertensive humans. Circulation 111, 315–320.10.1161/01.CIR.0000153269.07762.3BSuche in Google Scholar PubMed
Campbell, D.J., Zhang, Y., Kelly, D.J., Gilbert, R.E., McCarthy, D.J., Shi, W., and Smyth, G.K. (2011). Aliskiren increases bradykinin and tissue kallikrein mRNA levels in the heart. Clin. Exp. Pharmacol. Physiol. 38, 623–631.10.1111/j.1440-1681.2011.05572.xSuche in Google Scholar PubMed
Chao, J., Yin, H., Gao, L., Hagiwara, M., Shen, B., Yang, Z.R., and Chao, L. (2008). Tissue kallikrein elicits cardioprotection by direct kinin B2 receptor activation independent of kinin formation. Hypertension 52, 715–720.10.1161/HYPERTENSIONAHA.108.114587Suche in Google Scholar PubMed PubMed Central
Duncan, A.-M., Kladis, A., Jennings, G.L., Dart, A.M., Esler, M., and Campbell, D.J. (2000). Kinins in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R897–R904.10.1152/ajpregu.2000.278.4.R897Suche in Google Scholar PubMed
Feldman, D.L., Jin, L., Xuan, H., Contrepas, A., Zhou, Y., Webb, R.L., Mueller, D.N., Feldt, S., Cumin, F., Maniara, W., et al. (2008). Effects of aliskiren on blood pressure, albuminuria, and (pro)renin receptor expression in diabetic TG(mRen-2)27 rats. Hypertension 52, 130–136.10.1161/HYPERTENSIONAHA.107.108845Suche in Google Scholar PubMed
Gallagher, A.M., Yu, H., and Printz, M.P. (1998). Bradykinin-induced reductions in collagen gene expression involve prostacyclin. Hypertension 32, 84–88.10.1161/01.HYP.32.1.84Suche in Google Scholar
Goto, M., Liu, Y.G., Yang, X.M., Ardell, J.L., Cohen, M.V., and Downey, J.M. (1995). Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ. Res. 77, 611–621.10.1161/01.RES.77.3.611Suche in Google Scholar PubMed
Griol-Charhbili, V., Messadi-Laribi, E., Bascands, J.L., Heudes, D., Meneton, P., Giudicelli, J.F., Alhenc-Gelas, F., and Richer, C. (2005). Role of tissue kallikrein in the cardioprotective effects of ischemic and pharmacological preconditioning in myocardial ischemia. FASEB J. 19, 1172–1174.10.1096/fj.04-3508fjeSuche in Google Scholar PubMed
Hartman, J.C., Wall, T.M., Hullinger, T.G., and Shebuski, R.J. (1993). Reduction of myocardial infarct size in rabbits by ramiprilat: reversal by the bradykinin antagonist HOE 140. J. Cardiovasc. Pharmacol. 21, 996–1003.10.1097/00005344-199306000-00022Suche in Google Scholar PubMed
Ideishi, M., Sasaguri, M., Ikeda, M., and Arakawa, K. (1990). Angiotensin-converting activity of tissue kallikrein. Nephron 55 (Suppl. 1), 62–64.10.1159/000186037Suche in Google Scholar
Inoue, H., Fukui, K., and Miyake, Y. (1989). Identification and structure of the rat true tissue kallikrein gene expressed in the kidney. J. Biochem. 105, 834–840.10.1093/oxfordjournals.jbchem.a122754Suche in Google Scholar
Jalowy, A., Schulz, R., Dorge, H., Behrends, M., and Heusch, G. (1998). Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J. Am. Coll. Cardiol. 32, 1787–1796.10.1016/S0735-1097(98)00441-0Suche in Google Scholar
Kelly, D.J., Zhang, Y., Moe, G., Naik, G., and Gilbert, R.E. (2007). Aliskiren, a novel renin inhibitor is renoprotective in advanced experimental diabetic nephropathy. Diabetologia 50, 2398–2404.10.1007/s00125-007-0795-9Suche in Google Scholar PubMed
Koid, S.S., Ziogas, J., and Campbell, D.J. (2014). Aliskiren reduces myocardial ischemia-reperfusion injury by a bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanism. Hypertension 63, 768–773.10.1161/HYPERTENSIONAHA.113.02902Suche in Google Scholar PubMed
Krivoy, N., Schlüter, H., Karas, M., and Zidek, W. (1992). Generation of angiotensin II from human plasma by tissue kallikrein. Clin. Sci. 83, 477–482.10.1042/cs0830477Suche in Google Scholar PubMed
Linz, W. and Schölkens, B.A. (1992). Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J. Cardiovasc. Pharmacol. 20 (Suppl. 9), S83–S90.10.1097/00005344-199200209-00015Suche in Google Scholar
Linz, W., Martorana, P.A., and Schölkens, B.A. (1990). Local inhibition of bradykinin degradation in ischemic hearts. J. Cardiovasc. Pharmacol. 15(Suppl. 6), S99–S109.10.1097/00005344-199015061-00018Suche in Google Scholar
Linz, W., Wiemer, G., and Schölkens, B.A. (1996). Role of kinins in the pathophysiology of myocardial ischemia – in vitro and in vivo studies. Diabetes 45 (Suppl. 1), S51–S58.10.2337/diab.45.1.S51Suche in Google Scholar
Lundwall, A., Band, V., Blaber, M., Clements, J.A., Courty, Y., Diamandis, E.P., Fritz, H., Lilja, H., Malm, J., Maltais, L.J., et al. (2006). A comprehensive nomenclature for serine proteases with homology to tissue kallikreins. Biol. Chem. 387, 637–641.10.1515/BC.2006.082Suche in Google Scholar PubMed
Maruta, H. and Arakawa, K. (1983). Confirmation of direct angiotensin formation by kallikrein. Biochem. J. 213, 193–200.10.1042/bj2130193Suche in Google Scholar
McMurray, J.J., Krum, H., Abraham, W.T., Dickstein, K., Kober, L.V., Desai, A.S., Solomon, S.D., Greenlaw, N., Ali, M.A., Chiang, Y., et al. (2016). Aliskiren, enalapril, or aliskiren and enalapril in heart failure. N. Engl. J. Med. 374, 1521–1532.10.1056/NEJMoa1514859Suche in Google Scholar
Meneton, P., Bloch-Faure, M., Hagege, A.A., Ruetten, H., Huang, W., Bergaya, S., Ceiler, D., Gehring, D., Martins, I., Salmon, G., et al. (2001). Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice. Proc. Natl. Acad. Sci. USA 98, 2634–2639.10.1073/pnas.051619598Suche in Google Scholar
Messadi, E., Vincent, M.P., Griol-Charhbili, V., Mandet, C., Colucci, J., Krege, J.H., Bruneval, P., Bouby, N., Smithies, O., Alhenc-Gelas, F., et al. (2010). Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia. FASEB J. 24, 4691–4700.10.1096/fj.10.165902Suche in Google Scholar
Messadi-Laribi, E., Griol-Charhbili, V., Pizard, A., Vincent, M.P., Heudes, D., Meneton, P., Alhenc-Gelas, F., and Richer, C. (2007). Tissue kallikrein is involved in the cardioprotective effect of AT1-receptor blockade in acute myocardial ischemia. J. Pharmacol. Exp. Ther. 323, 210–216.10.1124/jpet.107.124859Suche in Google Scholar
Nussberger, J., Cugno, M., Amstutz, C., Cicardi, M., Pellacani, A., and Agostoni, A. (1998). Plasma bradykinin in angio-oedema. Lancet 351, 1693–1697.10.1016/S0140-6736(97)09137-XSuche in Google Scholar
Nussberger, J., Wuerzner, G., Jensen, C., and Brunner, H.R. (2002). Angiotensin II suppression in humans by the orally active renin inhibitor Aliskiren (SPP100): comparison with enalapril. Hypertension 39, e1–e8.10.1161/hy0102.102293Suche in Google Scholar PubMed
Potier, L., Waeckel, L., Vincent, M.P., Chollet, C., Gobeil, F., Jr., Marre, M., Bruneval, P., Richer, C., Roussel, R., Alhenc-Gelas, F., et al. (2013). Selective kinin receptor agonists as cardioprotective agents in myocardial ischemia and diabetes. J. Pharmacol. Exp. Ther. 346, 23–30.10.1124/jpet.113.203927Suche in Google Scholar PubMed
Sato, M., Engelman, R.M., Otani, H., Maulik, N., Rousou, J.A., Flack, J.E., 3rd, Deaton, D.W., and Das, D.K. (2000). Myocardial protection by preconditioning of heart with losartan, an angiotensin II type 1-receptor blocker: Implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation 102 (Suppl III), III-346–III-351.10.1161/circ.102.suppl_3.III-346Suche in Google Scholar
Sealey, J.E., Atlas, S.A., Laragh, J.H., Oza, N.B., and Ryan, J.W. (1978). Human urinary kallikrein converts inactive to active renin and is a possible physiological activator of renin. Nature 275, 144–145.10.1038/275144a0Suche in Google Scholar PubMed
Simson, J.A., Rowell, C., Barrett, J.M., King, J., and Chao, J. (1987). Rat urinary kallikrein localization in kidney: effects of fixation. Histochem. J. 19, 633–642.10.1007/BF01676169Suche in Google Scholar
Tschesche, H., Michaelis, J., Kohnert, U., Fedrowitz, J., and Oberhoff, R. (1989). Tissue kallikrein effectively activates latent matrix degrading metalloenzymes. Adv. Exp. Med. Biol. 247A, 545–548.10.1007/978-1-4615-9543-4_84Suche in Google Scholar
Wall, T.M., Sheehy, R., and Hartman, J.C. (1994). Role of bradykinin in myocardial preconditioning. J. Pharmacol. Exp. Ther. 270, 681–689.10.1016/S0022-3565(25)22425-9Suche in Google Scholar
White, W.B., Bresalier, R., Kaplan, A.P., Palmer, B.F., Riddell, R.H., Lesogor, A., Chang, W., and Keefe, D.L. (2010). Safety and tolerability of the direct renin inhibitor aliskiren: a pooled analysis of clinical experience in more than 12,000 patients with hypertension. J. Clin. Hypertens. (Greenwich) 12, 765–775.10.1111/j.1751-7176.2010.00352.xSuche in Google Scholar
Wood, J.M., Maibaum, J., Rahuel, J., Grutter, M.G., Cohen, N.C., Rasetti, V., Ruger, H., Goschke, R., Stutz, S., Fuhrer, W., et al. (2003). Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem. Biophys. Res. Commun. 308, 698–705.10.1016/S0006-291X(03)01451-7Suche in Google Scholar
Yoshida, H., Zhang, J.J., Chao, L., and Chao, J. (2000). Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension 35, 25–31.10.1161/01.HYP.35.1.25Suche in Google Scholar
Yousef, G.M. and Diamandis, E.P. (2003). An overview of the kallikrein gene families in humans and other species: emerging candidate tumour markers. Clin. Biochem. 36, 443–452.10.1016/S0009-9120(03)00055-9Suche in Google Scholar
Zeitz, C.J., Campbell, D.J., and Horowitz, J.D. (2003). Myocardial uptake and biochemical and hemodynamic effects of ACE inhibitors in humans. Hypertension 41, 482–487.10.1161/01.HYP.0000054976.67487.08Suche in Google Scholar PubMed
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: remodelling the KLK landscape down under
- HIGHLIGHT: 6TH INTERNATIONAL SYMPOSIUM ON KALLIKREINS AND KALLIKREIN-RELATED PEPTIDASES
- Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications
- Mechanistic insight from murine models of Netherton syndrome
- Development of molecules stimulating the activity of KLK3 – an update
- Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors
- Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10
- Clinical relevance of kallikrein-related peptidase 6 (KLK6) and 8 (KLK8) mRNA expression in advanced serous ovarian cancer
- Kallikrein-related peptidase 6 exacerbates disease in an autoimmune model of multiple sclerosis
- A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene
- Therapeutic modulation of tissue kallikrein expression
- In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B
- A computational analysis of the genetic and transcript diversity at the kallikrein locus
- Reviews
- Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome
- The power, pitfalls and potential of the nanodisc system for NMR-based studies
- Research Articles/Short Communications
- Cell Biology and Signaling
- Synergistic induction of cardiomyocyte differentiation from human bone marrow mesenchymal stem cells by interleukin 1β and 5-azacytidine
Artikel in diesem Heft
- Frontmatter
- Guest Editorial
- Highlight: remodelling the KLK landscape down under
- HIGHLIGHT: 6TH INTERNATIONAL SYMPOSIUM ON KALLIKREINS AND KALLIKREIN-RELATED PEPTIDASES
- Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications
- Mechanistic insight from murine models of Netherton syndrome
- Development of molecules stimulating the activity of KLK3 – an update
- Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors
- Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10
- Clinical relevance of kallikrein-related peptidase 6 (KLK6) and 8 (KLK8) mRNA expression in advanced serous ovarian cancer
- Kallikrein-related peptidase 6 exacerbates disease in an autoimmune model of multiple sclerosis
- A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene
- Therapeutic modulation of tissue kallikrein expression
- In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B
- A computational analysis of the genetic and transcript diversity at the kallikrein locus
- Reviews
- Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome
- The power, pitfalls and potential of the nanodisc system for NMR-based studies
- Research Articles/Short Communications
- Cell Biology and Signaling
- Synergistic induction of cardiomyocyte differentiation from human bone marrow mesenchymal stem cells by interleukin 1β and 5-azacytidine