Home Therapeutic modulation of tissue kallikrein expression
Article
Licensed
Unlicensed Requires Authentication

Therapeutic modulation of tissue kallikrein expression

  • Duncan J. Campbell EMAIL logo
Published/Copyright: August 17, 2016

Abstract

The kallikrein kinin system has cardioprotective actions and mediates in part the cardioprotection produced by angiotensin converting enzyme inhibitors and angiotensin type 1 receptor blockers. Additional approaches to exploit the cardioprotective effects of the kallikrein kinin system include the administration of tissue kallikrein and kinin receptor agonists. The renin inhibitor aliskiren was recently shown to increase cardiac tissue kallikrein expression and bradykinin levels, and to reduce myocardial ischemia-reperfusion injury by bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanisms. Thus, aliskiren represents a prototype drug for the modulation of tissue kallikrein expression for therapeutic benefit.

Acknowledgments

St. Vincent’s Institute of Medical Research is supported in part by the Victorian Government’s Operational Infrastructure Support Program.

References

Ashley, P.L. and MacDonald, R.J. (1985). Tissue-specific expression of kallikrein-related genes in the rat. Biochemistry 24, 4520–4527.10.1021/bi00338a006Search in Google Scholar PubMed

Campbell, D.J., Krum, H., and Esler, M.D. (2005). Losartan increases bradykinin levels in hypertensive humans. Circulation 111, 315–320.10.1161/01.CIR.0000153269.07762.3BSearch in Google Scholar PubMed

Campbell, D.J., Zhang, Y., Kelly, D.J., Gilbert, R.E., McCarthy, D.J., Shi, W., and Smyth, G.K. (2011). Aliskiren increases bradykinin and tissue kallikrein mRNA levels in the heart. Clin. Exp. Pharmacol. Physiol. 38, 623–631.10.1111/j.1440-1681.2011.05572.xSearch in Google Scholar PubMed

Chao, J., Yin, H., Gao, L., Hagiwara, M., Shen, B., Yang, Z.R., and Chao, L. (2008). Tissue kallikrein elicits cardioprotection by direct kinin B2 receptor activation independent of kinin formation. Hypertension 52, 715–720.10.1161/HYPERTENSIONAHA.108.114587Search in Google Scholar PubMed PubMed Central

Duncan, A.-M., Kladis, A., Jennings, G.L., Dart, A.M., Esler, M., and Campbell, D.J. (2000). Kinins in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R897–R904.10.1152/ajpregu.2000.278.4.R897Search in Google Scholar PubMed

Feldman, D.L., Jin, L., Xuan, H., Contrepas, A., Zhou, Y., Webb, R.L., Mueller, D.N., Feldt, S., Cumin, F., Maniara, W., et al. (2008). Effects of aliskiren on blood pressure, albuminuria, and (pro)renin receptor expression in diabetic TG(mRen-2)27 rats. Hypertension 52, 130–136.10.1161/HYPERTENSIONAHA.107.108845Search in Google Scholar PubMed

Gallagher, A.M., Yu, H., and Printz, M.P. (1998). Bradykinin-induced reductions in collagen gene expression involve prostacyclin. Hypertension 32, 84–88.10.1161/01.HYP.32.1.84Search in Google Scholar

Goto, M., Liu, Y.G., Yang, X.M., Ardell, J.L., Cohen, M.V., and Downey, J.M. (1995). Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ. Res. 77, 611–621.10.1161/01.RES.77.3.611Search in Google Scholar PubMed

Griol-Charhbili, V., Messadi-Laribi, E., Bascands, J.L., Heudes, D., Meneton, P., Giudicelli, J.F., Alhenc-Gelas, F., and Richer, C. (2005). Role of tissue kallikrein in the cardioprotective effects of ischemic and pharmacological preconditioning in myocardial ischemia. FASEB J. 19, 1172–1174.10.1096/fj.04-3508fjeSearch in Google Scholar PubMed

Hartman, J.C., Wall, T.M., Hullinger, T.G., and Shebuski, R.J. (1993). Reduction of myocardial infarct size in rabbits by ramiprilat: reversal by the bradykinin antagonist HOE 140. J. Cardiovasc. Pharmacol. 21, 996–1003.10.1097/00005344-199306000-00022Search in Google Scholar PubMed

Ideishi, M., Sasaguri, M., Ikeda, M., and Arakawa, K. (1990). Angiotensin-converting activity of tissue kallikrein. Nephron 55 (Suppl. 1), 62–64.10.1159/000186037Search in Google Scholar

Inoue, H., Fukui, K., and Miyake, Y. (1989). Identification and structure of the rat true tissue kallikrein gene expressed in the kidney. J. Biochem. 105, 834–840.10.1093/oxfordjournals.jbchem.a122754Search in Google Scholar

Jalowy, A., Schulz, R., Dorge, H., Behrends, M., and Heusch, G. (1998). Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J. Am. Coll. Cardiol. 32, 1787–1796.10.1016/S0735-1097(98)00441-0Search in Google Scholar

Kelly, D.J., Zhang, Y., Moe, G., Naik, G., and Gilbert, R.E. (2007). Aliskiren, a novel renin inhibitor is renoprotective in advanced experimental diabetic nephropathy. Diabetologia 50, 2398–2404.10.1007/s00125-007-0795-9Search in Google Scholar PubMed

Koid, S.S., Ziogas, J., and Campbell, D.J. (2014). Aliskiren reduces myocardial ischemia-reperfusion injury by a bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanism. Hypertension 63, 768–773.10.1161/HYPERTENSIONAHA.113.02902Search in Google Scholar PubMed

Krivoy, N., Schlüter, H., Karas, M., and Zidek, W. (1992). Generation of angiotensin II from human plasma by tissue kallikrein. Clin. Sci. 83, 477–482.10.1042/cs0830477Search in Google Scholar PubMed

Linz, W. and Schölkens, B.A. (1992). Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J. Cardiovasc. Pharmacol. 20 (Suppl. 9), S83–S90.10.1097/00005344-199200209-00015Search in Google Scholar

Linz, W., Martorana, P.A., and Schölkens, B.A. (1990). Local inhibition of bradykinin degradation in ischemic hearts. J. Cardiovasc. Pharmacol. 15(Suppl. 6), S99–S109.10.1097/00005344-199015061-00018Search in Google Scholar

Linz, W., Wiemer, G., and Schölkens, B.A. (1996). Role of kinins in the pathophysiology of myocardial ischemia – in vitro and in vivo studies. Diabetes 45 (Suppl. 1), S51–S58.10.2337/diab.45.1.S51Search in Google Scholar

Lundwall, A., Band, V., Blaber, M., Clements, J.A., Courty, Y., Diamandis, E.P., Fritz, H., Lilja, H., Malm, J., Maltais, L.J., et al. (2006). A comprehensive nomenclature for serine proteases with homology to tissue kallikreins. Biol. Chem. 387, 637–641.10.1515/BC.2006.082Search in Google Scholar PubMed

Maruta, H. and Arakawa, K. (1983). Confirmation of direct angiotensin formation by kallikrein. Biochem. J. 213, 193–200.10.1042/bj2130193Search in Google Scholar

McMurray, J.J., Krum, H., Abraham, W.T., Dickstein, K., Kober, L.V., Desai, A.S., Solomon, S.D., Greenlaw, N., Ali, M.A., Chiang, Y., et al. (2016). Aliskiren, enalapril, or aliskiren and enalapril in heart failure. N. Engl. J. Med. 374, 1521–1532.10.1056/NEJMoa1514859Search in Google Scholar

Meneton, P., Bloch-Faure, M., Hagege, A.A., Ruetten, H., Huang, W., Bergaya, S., Ceiler, D., Gehring, D., Martins, I., Salmon, G., et al. (2001). Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice. Proc. Natl. Acad. Sci. USA 98, 2634–2639.10.1073/pnas.051619598Search in Google Scholar

Messadi, E., Vincent, M.P., Griol-Charhbili, V., Mandet, C., Colucci, J., Krege, J.H., Bruneval, P., Bouby, N., Smithies, O., Alhenc-Gelas, F., et al. (2010). Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia. FASEB J. 24, 4691–4700.10.1096/fj.10.165902Search in Google Scholar

Messadi-Laribi, E., Griol-Charhbili, V., Pizard, A., Vincent, M.P., Heudes, D., Meneton, P., Alhenc-Gelas, F., and Richer, C. (2007). Tissue kallikrein is involved in the cardioprotective effect of AT1-receptor blockade in acute myocardial ischemia. J. Pharmacol. Exp. Ther. 323, 210–216.10.1124/jpet.107.124859Search in Google Scholar

Nussberger, J., Cugno, M., Amstutz, C., Cicardi, M., Pellacani, A., and Agostoni, A. (1998). Plasma bradykinin in angio-oedema. Lancet 351, 1693–1697.10.1016/S0140-6736(97)09137-XSearch in Google Scholar

Nussberger, J., Wuerzner, G., Jensen, C., and Brunner, H.R. (2002). Angiotensin II suppression in humans by the orally active renin inhibitor Aliskiren (SPP100): comparison with enalapril. Hypertension 39, e1–e8.10.1161/hy0102.102293Search in Google Scholar PubMed

Potier, L., Waeckel, L., Vincent, M.P., Chollet, C., Gobeil, F., Jr., Marre, M., Bruneval, P., Richer, C., Roussel, R., Alhenc-Gelas, F., et al. (2013). Selective kinin receptor agonists as cardioprotective agents in myocardial ischemia and diabetes. J. Pharmacol. Exp. Ther. 346, 23–30.10.1124/jpet.113.203927Search in Google Scholar PubMed

Sato, M., Engelman, R.M., Otani, H., Maulik, N., Rousou, J.A., Flack, J.E., 3rd, Deaton, D.W., and Das, D.K. (2000). Myocardial protection by preconditioning of heart with losartan, an angiotensin II type 1-receptor blocker: Implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation 102 (Suppl III), III-346–III-351.10.1161/circ.102.suppl_3.III-346Search in Google Scholar

Sealey, J.E., Atlas, S.A., Laragh, J.H., Oza, N.B., and Ryan, J.W. (1978). Human urinary kallikrein converts inactive to active renin and is a possible physiological activator of renin. Nature 275, 144–145.10.1038/275144a0Search in Google Scholar PubMed

Simson, J.A., Rowell, C., Barrett, J.M., King, J., and Chao, J. (1987). Rat urinary kallikrein localization in kidney: effects of fixation. Histochem. J. 19, 633–642.10.1007/BF01676169Search in Google Scholar

Tschesche, H., Michaelis, J., Kohnert, U., Fedrowitz, J., and Oberhoff, R. (1989). Tissue kallikrein effectively activates latent matrix degrading metalloenzymes. Adv. Exp. Med. Biol. 247A, 545–548.10.1007/978-1-4615-9543-4_84Search in Google Scholar

Wall, T.M., Sheehy, R., and Hartman, J.C. (1994). Role of bradykinin in myocardial preconditioning. J. Pharmacol. Exp. Ther. 270, 681–689.10.1016/S0022-3565(25)22425-9Search in Google Scholar

White, W.B., Bresalier, R., Kaplan, A.P., Palmer, B.F., Riddell, R.H., Lesogor, A., Chang, W., and Keefe, D.L. (2010). Safety and tolerability of the direct renin inhibitor aliskiren: a pooled analysis of clinical experience in more than 12,000 patients with hypertension. J. Clin. Hypertens. (Greenwich) 12, 765–775.10.1111/j.1751-7176.2010.00352.xSearch in Google Scholar

Wood, J.M., Maibaum, J., Rahuel, J., Grutter, M.G., Cohen, N.C., Rasetti, V., Ruger, H., Goschke, R., Stutz, S., Fuhrer, W., et al. (2003). Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem. Biophys. Res. Commun. 308, 698–705.10.1016/S0006-291X(03)01451-7Search in Google Scholar

Yoshida, H., Zhang, J.J., Chao, L., and Chao, J. (2000). Kallikrein gene delivery attenuates myocardial infarction and apoptosis after myocardial ischemia and reperfusion. Hypertension 35, 25–31.10.1161/01.HYP.35.1.25Search in Google Scholar

Yousef, G.M. and Diamandis, E.P. (2003). An overview of the kallikrein gene families in humans and other species: emerging candidate tumour markers. Clin. Biochem. 36, 443–452.10.1016/S0009-9120(03)00055-9Search in Google Scholar

Zeitz, C.J., Campbell, D.J., and Horowitz, J.D. (2003). Myocardial uptake and biochemical and hemodynamic effects of ACE inhibitors in humans. Hypertension 41, 482–487.10.1161/01.HYP.0000054976.67487.08Search in Google Scholar PubMed

Received: 2016-4-11
Accepted: 2016-8-10
Published Online: 2016-8-17
Published in Print: 2016-12-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Guest Editorial
  3. Highlight: remodelling the KLK landscape down under
  4. HIGHLIGHT: 6TH INTERNATIONAL SYMPOSIUM ON KALLIKREINS AND KALLIKREIN-RELATED PEPTIDASES
  5. Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications
  6. Mechanistic insight from murine models of Netherton syndrome
  7. Development of molecules stimulating the activity of KLK3 – an update
  8. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors
  9. Structural basis for the Zn2+ inhibition of the zymogen-like kallikrein-related peptidase 10
  10. Clinical relevance of kallikrein-related peptidase 6 (KLK6) and 8 (KLK8) mRNA expression in advanced serous ovarian cancer
  11. Kallikrein-related peptidase 6 exacerbates disease in an autoimmune model of multiple sclerosis
  12. A viable mouse model for Netherton syndrome based on mosaic inactivation of the Spink5 gene
  13. Therapeutic modulation of tissue kallikrein expression
  14. In vitro evidence that KLK14 regulates the components of the HGF/Met axis, pro-HGF and HGF-activator inhibitor 1A and 1B
  15. A computational analysis of the genetic and transcript diversity at the kallikrein locus
  16. Reviews
  17. Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome
  18. The power, pitfalls and potential of the nanodisc system for NMR-based studies
  19. Research Articles/Short Communications
  20. Cell Biology and Signaling
  21. Synergistic induction of cardiomyocyte differentiation from human bone marrow mesenchymal stem cells by interleukin 1β and 5-azacytidine
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0167/html
Scroll to top button