Startseite Fekete–Szegő problem of strongly α-close-to-convex functions associated with generalized fractional operator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fekete–Szegő problem of strongly α-close-to-convex functions associated with generalized fractional operator

  • Ammar S. Issa und Maslina Darus EMAIL logo
Veröffentlicht/Copyright: 11. November 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we solve the Fekete–Szegő problem of a strongly α-close-to-convex functions associated with generalized fractional operator.

MSC 2010: 30C45

Funding statement: The work here is supported by MOHE grant FRGS/1/2019/STG06/UKM/01/1.

References

[1] H. R. Abdel-Gawad and D. K. Thomas, The Fekete–Szegő problem for strongly close-to-convex functions, Proc. Amer. Math. Soc. 114 (1992), no. 2, 345–349. 10.1090/S0002-9939-1992-1065939-0Suche in Google Scholar

[2] A. Chonweerayoot, D. K. Thomas and W. Upakarnitikaset, On the coefficients of close-to-convex functions, Math. Japon. 36 (1991), no. 5, 819–826. Suche in Google Scholar

[3] M. Darus, Fekete–Szegő problem for α-close-to-convex functions, J. Comput. Math. Optim. 1 (2005), no. 1, 45–53. Suche in Google Scholar

[4] M. Darus and D. K. Thomas, On the Fekete–Szegő theorem for close-to-convex functions, Math. Japon. 44 (1996), no. 3, 507–511. Suche in Google Scholar

[5] M. Darus and D. K. Thomas, On the Fekete–Szegő theorem for close-to-convex functions, Math. Japon. 47 (1998), no. 1, 125–132. Suche in Google Scholar

[6] M. Darus and D. K. Thomas, The Fekete–Szegő theorem for strongly close-to-convex functions, Sci. Math. 3 (2000), no. 2, 201–212. Suche in Google Scholar

[7] M. Fekete and G. Szegő, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), no. 2, 85–89. 10.1112/jlms/s1-8.2.85Suche in Google Scholar

[8] A. Issa and M. Darus, Generalized complex fractional derivative and integral operators for the unified class of analytic functions, Int. J. Math. Comput. Sci. 15 (2020), no. 3, 857–868. Suche in Google Scholar

[9] M. Jahangiri, A coefficient inequality for a class of close-to-convex functions, Math. Japon. 41 (1995), no. 3, 557–559. Suche in Google Scholar

[10] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169–185. 10.1307/mmj/1028988895Suche in Google Scholar

[11] O. S. Kwon and N. E. Cho, On the Fekete–Szegő problem for certain analytic functions, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 10 (2003), no. 4, 265–271. Suche in Google Scholar

[12] R. R. London, Fekete–Szegő inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (1993), no. 4, 947–950. 10.2307/2159520Suche in Google Scholar

[13] C. Pommerenke, Univalent Functions, Studia Math. 25, Vandenhoeck & Ruprecht, Göttingen, 1975. Suche in Google Scholar

[14] M. O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3 (1955), 59–62. 10.1307/mmj/1031710535Suche in Google Scholar

Received: 2022-02-15
Revised: 2022-03-18
Accepted: 2022-03-22
Published Online: 2022-11-11
Published in Print: 2023-02-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2022-2197/html
Button zum nach oben scrollen