Home On bicomplex 𝔹ℂ-modules lp 𝕜(𝔹ℂ) and some of their geometric properties
Article
Licensed
Unlicensed Requires Authentication

On bicomplex 𝔹ℂ-modules lp 𝕜(𝔹ℂ) and some of their geometric properties

  • Nilay Değirmen ORCID logo and Birsen Sağır ORCID logo EMAIL logo
Published/Copyright: October 26, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, we examine the validity of bicomplex versions of some crucial inequalities with respect to the hyperbolic-valued norm | | 𝕜 and we discuss some topological and geometric concepts such as completeness, convexity, strict convexity and uniform convexity in the bicomplex setting with respect to the hyperbolic-valued norm 𝔻 , by defining the concept of 𝔻 -normed Banach bicomplex A-module and constructing 𝔻 -normed Banach bicomplex 𝔹 -modules l p 𝕜 ( 𝔹 ) .

Keywords: Bicomplex power
MSC 2010: 46B45; 40A05; 46B20

References

[1] R. P. Agarwal, D. O’Regan and D. R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Topol. Fixed Point Theory Appl. 6, Springer, New York, 2009. 10.1007/978-0-387-75818-3Search in Google Scholar

[2] D. Alpay, M. E. Luna-Elizarrarás, M. Shapiro and D. C. Struppa, Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis, Springer Briefs Math., Springer, Cham, 2014. 10.1007/978-3-319-05110-9Search in Google Scholar

[3] R. E. Castillo and H. Rafeiro, An Introductory Course in Lebesgue Spaces, CMS Books Math./Ouvrages Math. SMC, Springer, Cham, 2016. 10.1007/978-3-319-30034-4Search in Google Scholar

[4] M. Ciesielski and G. Lewicki, Sequence Lorentz spaces and their geometric structure, J. Geom. Anal. 29 (2019), no. 3, 1929–1952. 10.1007/s12220-018-0069-4Search in Google Scholar

[5] N. Güngör, Some geometric properties of the non-Newtonian sequence spaces l p ( N ) , Math. Slovaca 70 (2020), no. 3, 689–696. 10.1515/ms-2017-0382Search in Google Scholar

[6] R. Kumar and H. Saini, Topological bicomplex modules, Adv. Appl. Clifford Algebr. 26 (2016), no. 4, 1249–1270. 10.1007/s00006-016-0646-1Search in Google Scholar

[7] R. Kumar, K. Singh, H. Saini and S. Kumar, Bicomplex weighted Hardy spaces and bicomplex C * -algebras, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 217–235. 10.1007/s00006-015-0572-7Search in Google Scholar

[8] M. E. Luna-Elizarrarás, M. Shapiro, D. C. Struppa and A. Vajiac, Bicomplex Holomorphic Functions, Front. Math., Birkhäuser/Springer, Cham, 2015. 10.1007/978-3-319-24868-4Search in Google Scholar

[9] I. J. Maddox, Elements of Functional Analysis, 2nd ed., Cambridge University, Cambridge, 1988. Search in Google Scholar

[10] O. Oğur, Some geometric properties of weighted Lebesgue spaces L w p ( G ) , Facta Univ. Ser. Math. Inform. 33 (2018), no. 4, 523–530. Search in Google Scholar

[11] G. B. Price, An Introduction to Multicomplex Spaces and Functions, Monogr. Textb. Pure Appl. Math. 140, Marcel Dekker, New York, 1991. Search in Google Scholar

[12] N. Sager and B. Sağır, On completeness of some bicomplex sequence spaces, Palest. J. Math. 9 (2020), no. 2, 1–12, 891–902. Search in Google Scholar

[13] N. Sager and B. Sağır, Some inequalities in quasi-Banach algebra of non-Newtonian bicomplex numbers, Filomat 35 (2021), no. 7, 2231–2243. 10.2298/FIL2107231SSearch in Google Scholar

[14] B. Sağır and İ. Alaşalvar, On geometric properties of weighted Lebesgue sequence spaces, Ikonion J. Math. 1 (2019), no. 1, 18–25. Search in Google Scholar

[15] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici, Math. Ann. 40 (1892), no. 3, 413–467. 10.1007/BF01443559Search in Google Scholar

[16] S. Singh and S. Dutta, On certain generalized mth order geometric difference sequence spaces, Far East J. Math. Sci. (FJMS) 116 (2019), no. 1, 83–100. 10.17654/MS116010083Search in Google Scholar

[17] S. Singh, S. Dutta, S. Dash and R. P. Sharma, Strongly summable Fibonacci difference geometric sequences defined by Orlicz functions, Ganita 71 (2021), no. 2, 99–109. Search in Google Scholar

[18] J. Yeh, Real Aalysis, 2nd ed., World Scientific, Hackensack, 2006. 10.1142/6023Search in Google Scholar

Received: 2021-11-24
Revised: 2022-03-10
Accepted: 2022-03-18
Published Online: 2022-10-26
Published in Print: 2023-02-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2022-2194/html
Scroll to top button