Startseite On adjoint resolutions and dimensions of modules
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On adjoint resolutions and dimensions of modules

  • Lixin Mao EMAIL logo
Veröffentlicht/Copyright: 11. März 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We introduce and investigate the adjoint resolutions and adjoint dimensions of modules. As a consequence, we give some new characterizations of weak global dimensions of coherent rings in terms of adjoint resolutions and adjoint dimensions of modules.

Award Identifier / Grant number: 11771202

Award Identifier / Grant number: BK20160771

Award Identifier / Grant number: CKJA201707

Funding statement: This research was supported by NSFC (No. 11771202), NSF of Jiangsu Province of China (No. BK20160771) and Nanjing Institute of Technology of China (No. CKJA201707).

Acknowledgements

The author would like to express his sincere thanks for the referee for his/her valuable comments and suggestions.

References

[1] J. Asensio Mayor and J. Martinez Hernández, On flat and projective envelopes, J. Algebra 160 (1993), no. 2, 434–440. 10.1006/jabr.1993.1195Suche in Google Scholar

[2] M. Auslander and S. O. Smalø, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61–122. 10.1016/0021-8693(80)90113-1Suche in Google Scholar

[3] T. J. Cheatham and D. R. Stone, Flat and projective character modules, Proc. Amer. Math. Soc. 81 (1981), no. 2, 175–177. 10.1090/S0002-9939-1981-0593450-2Suche in Google Scholar

[4] J. L. Chen, P-projective modules, Comm. Algebra 24 (1996), no. 3, 821–831. 10.1080/00927879608825603Suche in Google Scholar

[5] R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239–252. 10.1016/0021-8693(75)90049-6Suche in Google Scholar

[6] N. Q. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459–1470. 10.1080/00927879608825646Suche in Google Scholar

[7] N. Q. Ding and J. L. Chen, Relative coherence and preenvelopes, Manuscripta Math. 81 (1993), no. 3–4, 243–262. 10.1007/BF02567857Suche in Google Scholar

[8] N. Q. Ding and J. L. Chen, On copure flat modules and flat resolvents, Comm. Algebra 24 (1996), no. 3, 1071–1081. 10.1080/00927879608825623Suche in Google Scholar

[9] E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209. 10.1007/BF02760849Suche in Google Scholar

[10] E. E. Enochs and O. M. G. Jenda, Copure injective resolutions, flat resolvents and dimensions, Comment. Math. Univ. Carolin. 34 (1993), no. 2, 203–211. Suche in Google Scholar

[11] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Exp. Math. 30, Walter de Gruyter, Berlin, 2000. 10.1515/9783110803662Suche in Google Scholar

[12] D. J. Fieldhouse, Character modules, dimension and purity, Glasg. Math. J. 13 (1972), no. 2, 144–146. 10.1017/S0017089500001567Suche in Google Scholar

[13] R. Göbel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, De Gruyter Exp. Math. 41, Walter de Gruyter, Berlin, 2006. 10.1515/9783110199727Suche in Google Scholar

[14] T. Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math. 189, Springer, New York, 1999. 10.1007/978-1-4612-0525-8Suche in Google Scholar

[15] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing, Waltham, 1966. Suche in Google Scholar

[16] L. X. Mao, Adjoint preenvelopes and precovers of modules, Publ. Math. Debrecen 88 (2016), no. 1–2, 139–161. 10.5486/PMD.2016.7305Suche in Google Scholar

[17] L. X. Mao and N. Q. Ding, Relative copure injective and copure flat modules, J. Pure Appl. Algebra 208 (2007), no. 2, 635–646. 10.1016/j.jpaa.2006.03.002Suche in Google Scholar

[18] C. Megibben, Absolutely pure modules, Proc. Amer. Math. Soc. 26 (1970), no. 4, 561–566. 10.1090/S0002-9939-1970-0294409-8Suche in Google Scholar

[19] J. J. Rotman, An Introduction to Homological Algebra, Pure Appl. Math. 85, Academic Press, New York, 1979. Suche in Google Scholar

[20] B. Stenström, Coherent rings and FP-injective modules, J. Lond. Math. Soc. 2 (1970), no. 2, 323–329. 10.1112/jlms/s2-2.2.323Suche in Google Scholar

[21] R. Wisbauer, Foundations of Module and Ring Theory. A Handbook for Study and Research, Algebra Logic Appl. 3, Gordon and Breach Science Publishers, Philadelphia, 1991. Suche in Google Scholar

[22] J. Xu, Flat Covers of Modules, Lecture Notes in Math. 1634, Springer, Berlin, 1996. 10.1007/BFb0094173Suche in Google Scholar

Received: 2016-04-23
Revised: 2016-11-21
Accepted: 2016-12-16
Published Online: 2018-03-11
Published in Print: 2020-09-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2018-0015/html
Button zum nach oben scrollen