Startseite Oscillation of first-order differential equations with several non-monotone retarded arguments
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oscillation of first-order differential equations with several non-monotone retarded arguments

  • Huseyin Bereketoglu , Fatma Karakoc , Gizem S. Oztepe und Ioannis P. Stavroulakis EMAIL logo
Veröffentlicht/Copyright: 15. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Consider the first-order linear differential equation with several non-monotone retarded arguments x(t)+i=1mpi(t)x(τi(t))=0, tt0, where the functions pi,τiC([t0,),+), for every i=1,2,,m, τi(t)t for tt0 and limtτi(t)=. New oscillation criteria which essentially improve the known results in the literature are established. An example illustrating the results is given.

MSC 2010: 34K11; 34K06

Dedicated to Academician Ivan T. Kiguradze on his 80th birthday


Acknowledgements

The authors would like to thank the referee for some useful comments.

References

[1] H. Akca, G. E. Chatzarakis and I. P. Stavroulakis, An oscillation criterion for delay differential equations with several non-monotone arguments, Appl. Math. Lett. 59 (2016), 101–108. 10.1016/j.aml.2016.03.013Suche in Google Scholar

[2] O. Arino, I. Győri and A. Jawhari, Oscillation criteria in delay equations, J. Differential Equations 53 (1984), no. 1, 115–123. 10.1016/0022-0396(84)90028-7Suche in Google Scholar

[3] L. Berezansky and E. Braverman, On some constants for oscillation and stability of delay equations, Proc. Amer. Math. Soc. 139 (2011), no. 11, 4017–4026. 10.1090/S0002-9939-2011-10820-7Suche in Google Scholar

[4] E. Braverman, G. E. Chatzarakis and I. P. Stavroulakis, Iterative oscillation tests for differential equations with several non-monotone arguments, Adv. Difference Equ. 2016 (2016), Paper No. 87. 10.1186/s13662-016-0817-3Suche in Google Scholar

[5] E. Braverman and B. Karpuz, On oscillation of differential and difference equations with non-monotone delays, Appl. Math. Comput. 218 (2011), no. 7, 3880–3887. 10.1016/j.amc.2011.09.035Suche in Google Scholar

[6] H. A. El-Morshedy and E. R. Attia, New oscillation criterion for delay differential equations with non-monotone arguments, Appl. Math. Lett. 54 (2016), 54–59. 10.1016/j.aml.2015.10.014Suche in Google Scholar

[7] A. Elbert and I. P. Stavroulakis, Oscillations of first order differential equations with deviating arguments, Recent Trends in Differential Equations, World Sci. Ser. Appl. Anal. 1, World Scientific, River Edge (1992), 163–178. 10.1142/9789812798893_0013Suche in Google Scholar

[8] A. Elbert and I. P. Stavroulakis, Oscillation and nonoscillation criteria for delay differential equations, Proc. Amer. Math. Soc. 123 (1995), no. 5, 1503–1510. 10.1090/S0002-9939-1995-1242082-1Suche in Google Scholar

[9] L. H. Erbe, Q. Kong and B. G. Zhang, Oscillation Theory for Functional-Differential Equations, Monogr. Textb. Pure Appl. Math. 190, Marcel Dekker, New York, 1995. Suche in Google Scholar

[10] L. H. Erbe and B. G. Zhang, Oscillation for first order linear differential equations with deviating arguments, Differential Integral Equations 1 (1988), no. 3, 305–314. 10.57262/die/1371669559Suche in Google Scholar

[11] N. Fukagai and T. Kusano, Oscillation theory of first order functional-differential equations with deviating arguments, Ann. Mat. Pura Appl. (4) 136 (1984), 95–117. 10.1007/BF01773379Suche in Google Scholar

[12] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Math. Appl. 74, Kluwer Academic, Dordrecht, 1992. 10.1007/978-94-015-7920-9Suche in Google Scholar

[13] M. K. Grammatikopoulos, R. Koplatadze and I. P. Stavroulakis, On the oscillation of solutions of first order differential equations with retarded arguments, Georgian Math. J. 10 (2003), no. 1, 63–76. 10.1515/GMJ.2003.63Suche in Google Scholar

[14] I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations. With Applications, Oxford Math. Monogr., Oxford University, New York, 1991. 10.1093/oso/9780198535829.001.0001Suche in Google Scholar

[15] J. Hale, Theory of Functional Differential Equations, 2nd ed., Appl. Math. Sci. 3, Springer, New York, 1977. 10.1007/978-1-4612-9892-2Suche in Google Scholar

[16] B. R. Hunt and J. A. Yorke, When all solutions of x=-qi(t)x(t-Ti(t)) oscillate, J. Differential Equations 53 (1984), no. 2, 139–145. 10.1016/0022-0396(84)90036-6Suche in Google Scholar

[17] G. Infante, R. Koplatadze and I. P. Stavroulakis, Oscillation criteria for differential equations with several retarded arguments, Funkcial. Ekvac. 58 (2015), no. 3, 347–364. 10.1619/fesi.58.347Suche in Google Scholar

[18] J. Jaroš and I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J. Math. 29 (1999), no. 1, 197–207. 10.1216/rmjm/1181071686Suche in Google Scholar

[19] C. Jian, On the oscillation of linear differential equations with deviating arguments, Math. Practice Theory 1 (1991), 32–41. 10.5486/PMD.1992.1169Suche in Google Scholar

[20] M. Kon, Y. G. Sficas and I. P. Stavroulakis, Oscillation criteria for delay equations, Proc. Amer. Math. Soc. 128 (2000), no. 10, 2989–2997. 10.1090/S0002-9939-00-05530-1Suche in Google Scholar

[21] R. Koplatadze, Specific properties of solutions of first order differential equations with several delay arguments, Izv. Nats. Akad. Nauk Armenii Mat. 50 (2015), no. 5, 24–33. 10.3103/S1068362315050039Suche in Google Scholar

[22] R. Koplatadze and G. Kvinikadze, On the oscillation of solutions of first-order delay differential inequalities and equations, Georgian Math. J. 1 (1994), no. 6, 675–685. 10.1007/BF02254685Suche in Google Scholar

[23] R. G. Koplatadze and T. A. Chanturiya, Oscillating and monotone solutions of first-order differential equations with deviating argument (in Russian), Differ. Uravn. 18 (1982), no. 8, 1463–1465, 1472. Suche in Google Scholar

[24] M. K. Kwong, Oscillation of first-order delay equations, J. Math. Anal. Appl. 156 (1991), no. 1, 274–286. 10.1016/0022-247X(91)90396-HSuche in Google Scholar

[25] G. Ladas, Sharp conditions for oscillations caused by delays, Appl. Anal. 9 (1979), no. 2, 93–98. 10.1080/00036817908839256Suche in Google Scholar

[26] G. Ladas, V. Lakshmikantham and J. S. Papadakis, Oscillations of higher-order retarded differential equations generated by the retarded argument, Delay and Functional Differential Equations and Their Applications Academic Press, New York (1972), 219–231. 10.1016/B978-0-12-627250-5.50013-7Suche in Google Scholar

[27] G. Ladas and I. P. Stavroulakis, Oscillations caused by several retarded and advanced arguments, J. Differential Equations 44 (1982), no. 1, 134–152. 10.1016/0022-0396(82)90029-8Suche in Google Scholar

[28] G. S. Ladde, V. Lakshmikantham and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, Monogr. Textb. Pure Appl. Math. 110, Marcel Dekker, New York, 1987. Suche in Google Scholar

[29] B. Li, Oscillation of first order delay differential equations, Proc. Amer. Math. Soc. 124 (1996), no. 12, 3729–3737. 10.1090/S0002-9939-96-03674-XSuche in Google Scholar

[30] A. D. Myškis, Linear homogeneous differential equations of the first order with retarded argument, Uspehi Matem. Nauk (N.S.) 5 (1950), no. 2(36), 160–162. Suche in Google Scholar

[31] Y. G. Sficas and I. P. Stavroulakis, Oscillation criteria for first-order delay equations, Bull. Lond. Math. Soc. 35 (2003), no. 2, 239–246. 10.1112/S0024609302001662Suche in Google Scholar

[32] I. P. Stavroulakis, A survey on the oscillation of differential equations with several deviating arguments, J. Inequal. Appl. 2014 (2014), Article ID 399. 10.1186/1029-242X-2014-399Suche in Google Scholar

[33] I. P. Stavroulakis, Oscillation criteria for delay and difference equations with non-monotone arguments, Appl. Math. Comput. 226 (2014), 661–672. 10.1016/j.amc.2013.10.041Suche in Google Scholar

[34] Z.-C. Wang, I. P. Stavroulakis and X.-Z. Qian, A survey on the oscillation of solutions of first order linear differential equations with deviating arguments, Appl. Math. E-Notes 2 (2002), 171–191. Suche in Google Scholar

[35] J. S. Yu, Z. C. Wang, B. G. Zhang and X. Z. Qian, Oscillations of differential equations with deviating arguments, Panamer. Math. J. 2 (1992), no. 2, 59–78. Suche in Google Scholar

[36] Y. Zhou and Y. Yu, On the oscillation of solutions of first order differential equations with deviating arguments, Acta Math. Appl. Sinica (English Ser.) 15 (1999), no. 3, 297–302. 10.1007/BF02669834Suche in Google Scholar

Received: 2017-12-12
Revised: 2018-04-09
Accepted: 2018-04-11
Published Online: 2019-10-15
Published in Print: 2020-09-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2019-2055/html
Button zum nach oben scrollen