Startseite Exploring the conceptualisation of locative events in French, English, and Dutch: Insights from eye-tracking on two memorisation tasks
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exploring the conceptualisation of locative events in French, English, and Dutch: Insights from eye-tracking on two memorisation tasks

  • Mégane Lesuisse ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. November 2022

Abstract

The present study addresses the influence of language on the conceptualisation of locative events (e.g., the bottle on the table) in French, English, and Dutch which differ greatly in their habitual encoding of locative events. Dutch obligatorily expresses the disposition of the Figure (viz. the bottle) via a Cardinal Posture Verb (CPV) like liggen ‘lie’, staan ‘stand’, or zitten ‘sit’. In French, the preferred locative marker is the neutral copula être ‘be’ which leaves dispositional nuances habitually unexpressed. English straddles the middle: while the neutral copula be is usually preferred, the CPVs are sometimes found because of diachronic reasons. Our study assesses the potential repercussions of these cross-linguistic differences on the perception of locative events via a recognition task involving eye-tracking and is run in a non-verbal and a verbal condition. Our findings show that, irrespective of the condition, recognition performance is affected by the linguistic preferences, which confirms the permanent effect of language on thought even beyond verbal contexts. The analysis of eye-movements corroborates this finding: depending on their language, the participants attend to the stimuli differently. In the verbal condition, language is used as a strategic tool to enhance memorisation and the participants’ eye-movements still reflect cross-linguistic differences.

Acknowledgements

I would like to thank Maarten Lemmens as well as the editors Beate Hampe and Anja Binanzer for their constructive feedback and valuable comments on an earlier version of this paper. Responsibility for any errors or inaccuracies in this final version is mine.

Appendix

A1

Modeling Semantic Density for Dutch

Call: mlogit(formula = SemanticDensity ∼ 1 | Series + Position, data = data Dutch, method = “nr”)
Frequencies of alternatives: N NVE V VE
0.05 0.0008 0.89 0.04

Coefficients Estimate Std. Error z-value Pr(>|z|) Significance
(Intercept):NVE

(Intercept):V

(Intercept):VE

Series2:NVE

Series2:V

Series2:VE

Series3:NVE

Series3:V

Series3:VE

PositionCP:NVE

PositionCP:V

PositionCP:VE

PositionNCP:NVE

PositionNCP:V

PositionNCP:VE

GroundNCG:NVE

GroundNCG:V

GroundNCG:VE
−2.950942

2.530437

−0.538598

0.11765

0.386097

0.034507

−16.380548

0.604699

−0.037211

−17.296914

−0.189811

−1.307101

1.052074

−0.053333

1.933351

−17.61952

−0.088687

−0.517935
1.279654

0.202299

0.338325

1.438461

0.21644

0.348896

4609.154388

0.22464

0.34288

4554.992258

0.20374

0.456682

1.446823

0.273288

0.358978

4111.664829

0.191135

0.292641
−2.306

12.5084

−1.592

0.0818

1.7839

0.0989

−0.0036

2.6919

−0.1085

−0.0038

−0.9316

−2.8622

0.7272

−0.1952

5.3857

−0.0043

−0.464

−1.7699
0.021108

<2.2e-16

0.111395

0.934814

0.074448

0.921214

0.997164

0.007105

0.913579

0.99697

0.351526

0.004208

0.467127

0.845272

7.22E-08

0.996581

0.642648

0.07675
*

***





.





**







**





***





.

Log-Likelihood: −831.81 McFadden R2: 0.08  Likelihood ratio test: X2 = 149.88 p < 2.22e−16
A2

Modeling Semantic Density for English

Call: mlogit(formula = SemanticDensity ∼ 1 | Series + Position, data = data English, method = “nr”)
Frequencies of alternatives: N

0.80
NVE

0.11
V

0.07
VE

0.009

Coefficients Estimate Std. Error z-value Pr(>|z|) Significance
(Intercept):NVE

(Intercept):V

(Intercept):VE
−1.990391

−2.270818

−5.216412
0.166143

0.191165

0.655402
−11.98

−11.8788

−7.9591
<2.2e–16

<2.2e–16

1.78E–15
***

***

***
Series2:NVE

Series2:V

Series2:VE

Series3:NVE

Series3:V

Series3:VE
−0.155533

0.044147

−0.312267

−0.667779

−0.26463

0.06386
0.167239

0.199334

0.62999

0.173751

0.203795

0.483768
−0.93

0.2215

−0.4957

−3.8433

−1.2985

0.132
0.3523705

0.8247239

0.6201277

0.0001214

0.1941117

0.8949801






***



PositionCP:NVE

PositionCP:V

PositionCP:VE

PositionNCP:NVE

PositionNCP:V

PositionNCP:VE
−0.356056

−0.702786

0.014215

1.766024

0.868021

2.607661
0.182764

0.207132

0.723366

0.165949

0.20441

0.581868
−1.9482

−3.3929

0.0197

10.6419

4.2465

4.4815
0.0513936

0.0006915

0.9843216

< 2.2e–16

2.17E–05

7.41E–06
.

***



***

***

***
GroundNCG:NVE

GroundNCG:V

GroundNCG:VE
−0.176373

−0.051507

−0.150917
0.143599

0.167869

0.453068
−1.2282

−0.3068

−0.3331
0.2193618

0.7589735

0.7390584
Log-Likelihood: −1400.4 McFadden R2: 0.07 Likelihood ratio test: X2 = 241.64 p < 2.22e–16
A3

Modeling Semantic Density for French

Call: mlogit(formula = SemanticDensity ∼ 1 | Series + Position, data = data French, method = “nr”)
Frequencies of alternatives: N

0.91
NVE

0.037
V

0.05

Coefficients Estimate Std. Error z-value Pr(>|z|) Significance
(Intercept):NVE

(Intercept):V
−3.07348

−3.27688
−0.27951

−0.2822
10.9958

11.6118
<2.2e–16

<2.2e–16
***

***
Series2:NVE

Series2:V

Series3:NVE

Series3:V
0.32205

0.12588

−0.31356

−0.21532
0.27786

0.27184

0.2981

0.2498
1.159

0.4631

−1.0519

−0.862
0.2464485

0.6433088

0.2928659

0.3886851
PositionCP:NVE

PositionCP:V

PositionNCP:NVE

PositionNCP:V
−1.27928

−1.39448

1.29257

2.24976
0.36395

0.42775

0.25654

0.23908
−3.515

−3.26

5.0386

9.4103
0.0004397

0.0011141

4.69E–07

< 2.2e–16
***

**

***

***
GroundNCG:NVE

GroundNCG:V
−0.31732

−0.26259
0.23748

0.21761
−1.3362

−1.2067
0.1814789

0.2275488
Log-Likelihood: −665.88 McFadden R2: 0.14 Likelihood ratio test: X2 = 231.89 p < 2.22e–16
A4

Modeling Figure versus Ground orientedness in the non-verbal task

Linear mixed model fit by maximum likelihood [‘lmerMod’]
Formula: Dwell.Time.ms. ∼ Language * AOI.Name + Position + Ground + Series. + (1 | Participant) + (1 | Stimulus)

AIC

207966.9
BIC

208071.1
logLik

−103969.4
deviance

207938.9
df.resid

12586
Estimate Std. Dev. T-value
(Intercept)

LanguageEnglish

LanguageFrench

AOI.NameGround

PositionCP

PositionNCP

GroundNCG

Series.Series2

Series.Series3

LanguageEnglish:AOI.Ground

LanguageFrench:AOI.Ground
2540.286

−260.52

3.618

−1592.118

−4.826

22.858

6.041

−45.138

−57.238

200.357

−79.294
41.503

53.658

53.194

28.107

18.542

23.794

17.066

20.4

20.093

40.097

39.749
61.207

−4.855

0.068

−56.645

−0.26

0.961

0.354

−2.213

−2.849

4.997

−1.995
A5

Modeling orientational scanpaths on vertical Figures in the non-verbal task

Linear mixed model fit by maximum likelihood [‘lmerMod’]
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus)

AIC

4099.1
BIC

4160
logLik

−2039.6
deviance

4079.1
df.resid

3247
Estimate Std. Dev. T-value p-values Significance
(Intercept)

LanguageEnglish

LanguageFrench

PositionCanonical

PositionNonCanonical

GroundNonCanonical

Series2

Series3
−0.3447

0.181

0.1234

−0.6159

−0.751

0.5326

0.7459

0.6944
0.4419

0.1321

0.1326

0.414

0.6291

0.349

0.4334

0.4346
−0.78

1.37

0.931

−1.487

−1.194

1.526

1.721

1.598
0.4353

0.1707

0.3519

0.1369

0.2326

0.127

0.0852

0.1101
A6

Modeling orientational scanpaths on horizontal Figures in the non-verbal task

Linear mixed model fit by maximum likelihood [‘lmerMod’]
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus)

AIC

2789.6
BIC

2847.2
logLik

−1384.8
deviance

2769.6
df.resid

2336
Estimate Std. Dev. T-value p-values Significance
(Intercept)

LanguageEnglish

LanguageFrench

PositionCanonical

PositionNonCanonical

GroundNonCanonical

Series2

Series3
0.65745

−0.42702

−0.46622

−0.86413

−0.18237

−1.20217

0.28855

−0.07791
0.61001

0.16267

0.16376

0.50962

0.52299

0.44328

0.51522

0.57518
1.078

−2.625

−2.847

−1.696

−0.349

−2.712

0.56

−0.135
0.28114

0.00866

0.00441

0.08995

0.72732

0.00669

0.57544

0.89226


**

**

.



**
A7

Modeling Figure versus Ground orientedness in the verbal task

Linear mixed model fit by maximum likelihood [‘lmerMod’]
Formula: Dwell.Time.ms. ∼ Language * AOI.Name + Position + Ground + Series. + (1 | Participant) + (1 | Stimulus)

AIC

217585.2
BIC

217689.4
logLik

108778.6
deviance

217557.2
df.resid

12544
Estimate Std. Dev. T-value
(Intercept)

LanguageEnglish

LanguageFrench

AOI.NameGround

PositionCanonical

PositionNonCanonical

GroundNonCanonical

SeriesSeries2

SeriesSeries3

LanguageEnglish:AOI.NameGround

LanguageFrench:AOI.NameGround
2867.3

−216.1

−494.46

−650.69

−10.73

−121.06

88.72

14.4

115.75

212.95

347.82
74.86

86.36

85.43

41.91

47.21

59.69

43.61

52.29

49.85

60.48

59.52
38.304

−2.502

−5.788

−15.526

−0.227

−2.028

2.035

0.275

2.322

3.521

5.844
A8

Modeling orientational scanpaths on vertical Figures in the verbal task

Linear mixed model fit by maximum likelihood [‘lmerMod’]
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus)

AIC

3448.2
BIC

3509.2
logLik

−1714.1
deviance

3428.2
df.resid

3275
Estimate Std. Dev. T-value p-values
(Intercept)

LanguageEnglish

LanguageFrench

PositionCanonical

PositionNonCanonical

GroundNonCanonical

Series2

Series3
1.0764

0.1016

0.1367

−0.5902

−0.3315

0.5753

0.623

0.1368
0.5518

0.1496

0.1485

0.5201

0.784

0.4368

0.5419

0.5409
1.951

0.679

0.921

−1.135

−0.423

1.317

1.15

0.253
0.0511

0.497

0.3573

0.2565

0.6724

0.1878

0.2503

0.8004
A9

Modeling orientational scanpaths on horizontal Figures in the verbal task

Linear mixed model fit by maximum likelihood [‘lmerMod’]
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus)

AIC

2827.1
BIC

2884.9
logLik

−1403.5
deviance

2807.1
df.resid

2390
Estimate Std. Dev. T-value p-values Significance
(Intercept)

LanguageEnglish

LanguageFrench

PositionCanonical

PositionNonCanonical

GroundNonCanonical

Series2

Series3
0.62

−0.1217

−0.58368

−1.43134

−0.05375

−0.5142

0.79417

0.2253
0.89

0.17335

0.17216

0.74509

0.7372

0.67301

0.74857

0.82078
0.69

−0.702

−3.39

−1.921

−0.073

−0.764

1.061

0.274
0.48

0.482637

0.000698

0.05473

0.941874

0.444856

0.288726

0.783702




***









A10

Modeling orientational scanpaths on vertical Figures across conditions

Linear mixed model fit by maximum likelihood [‘lmerMod’]
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus)

AIC

7575.4
BIC

7670.4
logLik

−3773.7
deviance

7547.4
df.resid

6528
Estimate Std. Dev. T-value p-values Significance
(Intercept)

LanguageEnglish

LanguageFrench

ConditionNV

PositionCanonical

PositionNonCanonical

PositionNonCanonical

GroundNonCanonical

Series2

Series3

LanguageEnglish:ConditionNV

LanguageFrench:ConditionNV
0.93719

0.07131

0.13037

−1.16907

−0.58655

−0.84147

−0.21029

0.5384

0.66812

0.40781

0.10573

−0.0162
0.37558

0.12661

0.12595

0.27631

0.32733

0.63916

0.64184

0.27527

0.34168

0.34166

0.1408

0.1395
2.495

0.563

1.035

−4.231

−1.792

−1.317

−0.328

1.956

1.955

1.194

0.751

−0.116
0.0126

0.5733

0.3006

2.33E–05

0.0731

0.188

0.7432

0.0505

0.0505

0.2326

0.4527

0.9075
*





***

.







.

.
A11

Modeling orientational scanpaths on horizontal Figures across conditions

Linear mixed model fit by maximum likelihood [‘lmerMod’]
Formula: Extremities ∼ Language + Position + Ground + Series + (1 | Participant) + (1 | Stimulus)

AIC

5614.8
BIC

5705.3
logLik

−2793.4
deviance

5586.8
df.resid

4732
Estimate Std. Dev. T-value p-values Significance
(Intercept)

LanguageEnglish

LanguageFrench

ConditionNV

PositionCanonical

PositionNonCanonical

PositionNonCanonical

GroundNonCanonical

Series2

Series3

LanguageEnglish:ConditionNV

LanguageFrench:ConditionNV
0.77875

−0.11634

−0.56898

−0.24462

−1.15366

−0.34651

0.10558

−0.85659

0.50167

0.06327

−0.32252

0.09294
0.57025

0.15357

0.15337

0.44454

0.44509

0.57609

0.57929

0.39312

0.44929

0.49773

0.16362

0.16232
1.366

−0.758

−3.71

−0.55

−2.592

−0.601

0.182

−2.179

1.117

0.127

−1.971

0.573
0.172053

0.448677

0.000207

0.582129

0.009542

0.547522

0.855378

0.029334

0.264176

0.898855

0.048709

0.56693




***



**





*





*

References

Ameka, Felix K. & Stephen C. Levinson. 2007. Introduction – The typology and semantics of locative predicates: Posturals, positionals and other beasts. Linguistics 45. 847–872.10.1515/LING.2007.025Suche in Google Scholar

Bates, Douglas, Martin Mächler, Ben Bolker & Steve Walker. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67(1). 1–48. doi:10.18637/jss.v067.i01.10.18637/jss.v067.i01Suche in Google Scholar

Billman, Dorrit & Meredyth Krych. 1998. Path and manner verbs in action: Effects of “Skipping” or “Exiting” on event memory. In Morton Ann Gernsbacher & Sharon J. Derry (eds.), Proceedings of the 20th Annual Conference of the Cognitive Science Society, 156–161. Mahwah, NJ, & London: Lawrence Erlbaum Associates.10.4324/9781315782416-37Suche in Google Scholar

Billman, Dorrit, Angela Swilley & Meredyth Krych. 2000. Path and manner priming: Verb production and event recognition. In Lila R. Gleitman and Aravind K. Joshi (eds.), Proceedings of the 22nd Annual Conference of the Cognitive Science Society, 615–620. Mahwah, NJ, & London: Lawrence Erlbaum Associates.Suche in Google Scholar

Bloom, Paul, Mary A. Peterson, Lynn Nadel & Merrill F. Garrett. 1999. Language and space. (Language, Speech and Communication). Cambridge, MA: MIT Press.10.7551/mitpress/4107.001.0001Suche in Google Scholar

Bosse, Solveig & Anna Papafragou. 2010. Spatial position in language and visual memory: A cross-linguistic comparison. In Stellan Ohlsson & Richard Catrambone (eds.), Proceedings of the 32th Annual Meeting of the Cognitive Science Society, 1052–1057. Austin, TX: Cognitive Science Society.Suche in Google Scholar

Bosse, Solveig & Anna Papafragou. 2018. Does language affect memory for object position? A cross-linguistic comparison. Spatial Cognition and Computation 18(4). 285–314.10.1080/13875868.2018.1440396Suche in Google Scholar

Cardini, Filippo E. 2010. Evidence against Whorfian effects in motion conceptualisation. Journal of Pragmatics 42. 1442–1459.10.1016/j.pragma.2009.09.017Suche in Google Scholar

Coventry, Kenny R. & Simon C. Garrod. 2004. Saying, seeing, and acting: The psychological semantics of spatial prepositions. Hove & New York: Psychology Press.10.4324/9780203641521Suche in Google Scholar

Croissant, Yves. 2020. Estimation of Random Utility Models in R: The mlogit Package. Journal of Statistical Software 95. 1–41.10.18637/jss.v095.i11Suche in Google Scholar

Dunn, Michael, Anna Margetts, Sergio Meira & Angela Terrill. 2007. Four languages from the lower end of the typology of locative predication. Linguistics 45. 873–892.10.1515/LING.2007.026Suche in Google Scholar

Feist, Michele I. & Paula Cifuentes Férez. 2013. Remembering how: Language, memory, and the salience of manner. Journal of Cognitive Science 14. 379–398.10.17791/jcs.2013.14.4.379Suche in Google Scholar

Finkbeiner, Matthew, Janet Nicol, Delia Greth & Kumiko Nakamura. 2002. The role of language in memory for actions. Journal of Psycholinguist Research 31. 447–457.10.1023/A:1021204802485Suche in Google Scholar

Flecken, Monique, Johannes Gerwien, Mary Carroll & Christiane von Stutterheim. 2014. Analyzing gaze allocation during language planning: A cross-linguistic study on dynamic events. Language and Cognition 7(1). 138–166.10.1017/langcog.2014.20Suche in Google Scholar

Flecken, Monique, Panos Athanasopoulos, Jan R. Kuipers & Guillaume Thierry. 2015. On the road to somewhere: Brain potentials reflect language effects on motion event perception. Cognition 141. 41–51.10.1016/j.cognition.2015.04.006Suche in Google Scholar

Flecken, Monique & Geertje Van Bergen. 2019. Can the English stand the bottle like the Dutch? Effects of relational categories on object perception. Cognitive Neuropsychology 37. 271–287.10.1080/02643294.2019.1607272Suche in Google Scholar

Gennari, Silvia P., Steven A. Sloman, Barbare C. Malt & W. Tecumseh Fitch. 2002. Motion events in language and cognition. Cognition 83(1). 49–79.10.1016/S0010-0277(01)00166-4Suche in Google Scholar

Gullberg, Marianne. 2011. Language-specific encoding of placement events in gestures. In Jürgen Bohnemeyer & Eric Pederson (eds.), Event representation in language and cognition, 166–188. Cambridge: Cambridge University Press.10.1017/CBO9780511782039.008Suche in Google Scholar

Henderson, John M., James R. Brockmole, Monica Catelhano & Michael Mack. 2007. Visual saliency does not account for eye-movements during visual search in real-world scenes. In Roger P. G. Van Gompel, Martin H. Fisher, Wayne S. Murray & Robin L. Hill. (eds.), Eye-movements: A window on mind and brain, 538–562. Amsterdam: Elsevier.10.1016/B978-008044980-7/50027-6Suche in Google Scholar

Hickmann, Maya, Helen Engemann, Efstathia Soroli, Henriëtte Hendricks & Coralie Vincent. 2017. Expressing and categorizing motion in French and English: verbal and non-verbal cognition across languages. In Iraide Ibarretxe-Antuñano (ed.), Motion and Space across languages: theory and applications, 61–94. Amsterdam: John Benjamins.10.1075/hcp.59.04hicSuche in Google Scholar

Hohenstein, Jill M. 2005. Language-related motion events similarities in English and Spanish-speaking children. Journal of Cognition and Development 6(3). 403–425.10.1207/s15327647jcd0603_5Suche in Google Scholar

Koster, Dietha & Teresa Cadierno. 2018. Is perception of placement universal? A mixed methods perspective on linguistic relativity. Lingua 207. 23–37.10.1016/j.lingua.2018.02.006Suche in Google Scholar

Landau, Barbara & Ray Jackendoff. 1993. “What” and “where” in spatial language and spatial cognition. Behavioral and Brain Sciences 16. 217–265.10.1017/S0140525X00029733Suche in Google Scholar

Landau, Barbara, Banchiamlack Dessalegn & Ariel M. Goldberg. 2010. Language and space: momentary interactions. In Vyvyan Evans & Paul Chilton (eds.), Language, cognition and space: the state of the art and new directions, 51–77. London: Equinox Publishing.Suche in Google Scholar

Lemmens, Maarten. 2002. The semantic network of Dutch posture verbs. In John Newman (ed.), The linguistics of sitting, standing, and lying, 103–139. Amsterdam & Philadelphia: John Benjamins.10.1075/tsl.51.07lemSuche in Google Scholar

Lemmens, Maarten. 2005. Motion and location: toward a cognitive typology. In Genevieve Girard-Gillet (ed.), Parcours linguistiques. Domaine anglais, 223–244. Publications de l’ Université de Saint-Étienne.Suche in Google Scholar

Lemmens, Maarten. 2014. Une grammaticalisation ratée? Une étude diachronique de stand en anglais, Anglophonia 18. https://journals.openedition.org/anglophonia/327 (accessed 20 July 2022).10.4000/anglophonia.327Suche in Google Scholar

Lemmens, Maarten & Dan Slobin. 2008. Positie- en bewegingswerkwoorden in het Nederlands, het Engels en het Frans. Koninklijke Academie voor Nederlandse Taal- en Letterkunde 118. 17–32.Suche in Google Scholar

Lemmens, Maarten & Julien Perrez. 2012. A quantitative analysis of the use of posture verbs by French-speaking learners of Dutch. CogniTextes 533. https://journals.openedition.org/cognitextes/609 (accessed 1 June 2022).10.4000/cognitextes.609Suche in Google Scholar

Lesuisse, Mégane & Maarten Lemmens. 2018. Constructions and halfly-missed grammaticalization: A diachronic study of English posture verbs. In Evie Coussé, Peter Andersson & Joel Olofsson (eds.), Grammaticalization meets Construction Grammar, 43–74. Amsterdam & Philadelphia: John Benjamins.10.1075/cal.21.c3Suche in Google Scholar

Montero-Melis, Guillermo. 2017. Thoughts in motion: The role of long-term L1 and short-term L2 experience when talking and thinking of caused Motion. PhD Thesis. Stockholm University Press.Suche in Google Scholar

Newman, John. 2002. The Linguistics of Sitting, Standing, and Lying. Amsterdam & Philadelphia: John Benjamins.10.1075/tsl.51Suche in Google Scholar

Papafragou, Anna, Christine Massey & Lila Gleitman. 2002. “Shake, rattle, ‘n’ roll: The representation of motion in language and cognition”. Cognition 84. 189–219.10.1016/S0010-0277(02)00046-XSuche in Google Scholar

Papafragou, Anna, Justin Hulbert & John Trueswell. 2008. Does language guide event perception? Evidence from eye movements. Cognition 108(1). 155–184.10.1016/j.cognition.2008.02.007Suche in Google Scholar

Papafragou, Anna & Stathis Selimis. 2010. Event categorisation and language: A cross-linguistic study of motion. Language and Cognitive Processes 25. 224–260.10.1080/01690960903017000Suche in Google Scholar

Skordos, Dimitrios, Ann Bunger, Catherine Richards, Stathis Selimis, John Trueswell & Anna Papafragou. 2019. Motion verbs and memory for motion events. Cognitive Neuropsychology 37(5–6). 254–270.10.1080/02643294.2019.1685480Suche in Google Scholar

Slobin, Dan. I. 2007. Language and thought online: Cognitive consequences of linguistic relativity. In Benjamin K. Bergen, Vyvyan Evans & Jörg Zinken (eds.), The cognitive linguistics reader, 902–928. London: Equinox Publishing.Suche in Google Scholar

Soroli, Efstathia. 2011. Typology and spatial cognition in English, French and Greek. Evidence from eye-tracking. In Antonis Botinis (ed.), ExLing 2011, Proceedings of the 4th Tutorial and Research Workshop on Experimental Linguistics, 25–27 May, 127–130. Paris: Diderot.10.36505/ExLing-2011/04/0031/000200Suche in Google Scholar

Soroli, Efstathia. 2012. Variation in spatial language and cognition: Exploring visuo-spatial thinking and speaking cross-linguistically. Cognitive Processing 13. 333–337.10.1007/s10339-012-0494-4Suche in Google Scholar

Soroli, Efstathia. 2016. Does language affect the way we perceive and talk about the visual world? Paper presented at the Research Group in Clinical Linguistics and Language Acquisition Seminar. University of Oslo (Norway), 4 April.Suche in Google Scholar

Soroli, Efstathia. 2018. Focal vs. global ways of motion event processing and the role of language: evidence from categorization tasks and eye-tracking. In Antonis Botinis (ed.), ExLing 2018, Proceedings of the 9th Tutorial and Research Workshop on Experimental Linguistics, 28–30 August 2018, 109–112. Paris: Diderot.10.36505/ExLing-2018/09/0026/000359Suche in Google Scholar

Soroli, Efstathia & Maya Hickmann. 2010. Language and spatial representations in French and in English: Some evidence from eye-movements. In Giovanna Marotta, Alessandro Lenci, Linda Meini & Francesco Rovai (eds.), Space in Language, 581–597. Pisa: Edizioni ETS.Suche in Google Scholar

Soroli, Efstathia, Maya Hickmann, Henriëtte Hendriks, Helen Engemann & Coralie Vincent. 2015. Language effects on spatial cognition? Cross-linguistic evidence and eye-tracking. Talk presented at NINJAL International Symposium: Typology and Cognition in Motion Event Descriptions, Tokyo, Japan, 30 January. https://halshs.archives-ouvertes.fr/halshs-01111712 (accessed 20 July 2022).Suche in Google Scholar

Soroli, Efstathia, Maya Hickmann & Henriëtte Hendricks. 2019. Casting an eye on motion-events: Eye-tracking and its implications for typology. In Michel Aurnague & Dejan Stosic (eds.), The semantics of dynamic space in French: Descriptive, experimental and formal studies on motion expression, 381–438. Amsterdam: John Benjamins.10.1075/hcp.66.07sorSuche in Google Scholar

Talmy, Leonard. 2000a. Toward a cognitive semantics. Vol 1. Cambridge, MA: MIT Press.Suche in Google Scholar

Talmy, Leonard. 2000b. Toward a cognitive semantics. Vol 2. Cambridge, MA: MIT Press.10.7551/mitpress/6847.001.0001Suche in Google Scholar

Trueswell, John C. & Anna Papafragou. 2010. Perceiving and remembering events cross-linguistically: Evidence from dual-task paradigms. Journal of Memory and Language 63. 64–82.10.1016/j.jml.2010.02.006Suche in Google Scholar

Van Staden, Miriam, Melissa Bowerman Mariet Verhelst. 2006. Some properties of spatial description in Dutch. In Stephen C. Levinson & David Wilkins (eds.), Grammars of Space, 475–511. Cambridge: Cambridge University Press.10.1017/CBO9780511486753.014Suche in Google Scholar

Whorf, Benjamin L. 1970 [1956]. Language, thought and reality. Cambridge, MA: MIT Press.Suche in Google Scholar

Published Online: 2022-11-11
Published in Print: 2022-11-25

©2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gcla-2022-0007/html
Button zum nach oben scrollen