Startseite Public-key cryptosystem based on invariants of diagonalizable groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Public-key cryptosystem based on invariants of diagonalizable groups

  • František Marko EMAIL logo , Alexandr N. Zubkov und Martin Juráš
Veröffentlicht/Copyright: 19. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We develop a public-key cryptosystem based on invariants of diagonalizable groups and investigate properties of such a cryptosystem first over finite fields, then over number fields and finally over finite rings. We consider the security of these cryptosystem and show that it is necessary to restrict the set of parameters of the system to prevent various attacks (including linear algebra attacks and attacks based on the Euclidean algorithm).

MSC 2010: 94A60; 11T71

Funding statement: This publication was made possible by an NPRF award NPRP 6-1059-1-208 from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

References

[1] S. Agarwal and G. S. Frandsen, Binary GCD like algorithms for some complex quadratic rings, Algorithmic Number Theory, Lecture Notes in Comput. Sci. 3076, Springer, Berlin (2004), 57–71. 10.1007/978-3-540-24847-7_4Suche in Google Scholar

[2] L. Babai, Graph isomorphism in quasipolynomial time, preprint (2015), https://arxiv.org/abs/1512.03547. Suche in Google Scholar

[3] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966. Suche in Google Scholar

[4] J. Buchsmann, M. J. Jacobson and E. Teske, On some computational problems in finite abelian groups, Math. Comp. 66 (1997), no. 220, 1663–1687. 10.1090/S0025-5718-97-00880-6Suche in Google Scholar

[5] W. Burnside, On groups of linear substitutions of finite order which possess quadratic invariants, Proc. Lond. Math. Soc. (2) 12 (1913), no. 1, 89–93. 10.1112/plms/s2-12.1.89Suche in Google Scholar

[6] H. Cohen, A course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer, Berlin, 1993. 10.1007/978-3-662-02945-9Suche in Google Scholar

[7] M. Conforti, G. Cornuéjols and G. Zambelli, Integer Programming, Grad. Texts in Math. 271, Springer, Cham, 2014. 10.1007/978-3-319-11008-0Suche in Google Scholar

[8] T. ElGamal, On computing logarithm over finite fields, Advances in Cryptology – CRYPTO 85 (Santa Barbara 1985), Lecture Notes in Comput. Sci. 218, Springer, Berlin (1985), 396–402. 10.1007/3-540-39799-X_28Suche in Google Scholar

[9] T. ElGamal, Public-key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inform. Theory 31 (1985), no. 4, 469–472. 10.1007/3-540-39568-7_2Suche in Google Scholar

[10] F. Gologlu, R. Granger, G. McGuire and J. Zumbragel, Discrete logarithms in GF(26120), NMBRTHRY List (2013). Suche in Google Scholar

[11] D. Grigoriev, Public-key cryptography and invariant theory, J. Math. Sci. (N. Y.) 126 (2005), no. 3, 1152–1157. 10.1007/s10958-005-0068-4Suche in Google Scholar

[12] D. Grigoriev, A. Kojevnikov and S. J. Nikolenko, Algebraic cryptography: New constructions and their security against provable break, St. Peterburg Math. J. 20 (2009), no. 6, 937–953. 10.1090/S1061-0022-09-01079-6Suche in Google Scholar

[13] W. C. Huffman, Polynomial invariants of finite linear groups of degree two, Canad. J. Math. 32 (1980), no. 2, 317–330. 10.4153/CJM-1980-024-6Suche in Google Scholar

[14] J. E. Humphreys, Linear Algebraic Groups, Grad. Texts in Math. 21, Springer, New York, 1975. 10.1007/978-1-4684-9443-3Suche in Google Scholar

[15] A. Joux, Discrete Logarithms in GF(24080), NMBRTHRY List (2013). Suche in Google Scholar

[16] E. Kaltofen and H. Rolletschek, Computing greatest common divisors and factorizations in quadratic number fields, Math. Comp. 53 (1989), no. 188, 697–720. 10.1090/S0025-5718-1989-0982367-2Suche in Google Scholar

[17] M. Laššák and Š. Porubský, Fermat–Euler theorem in algebraic number fields, J. Number Theory 60 (1996), 254–290. 10.1006/jnth.1996.0123Suche in Google Scholar

[18] F. Marko and A. N. Zubkov, Minimal degrees of invariants of (super)groups – A connection to cryptology, Linear Multilinear Algebra (2016), 10.1080/03081087.2016.1273876. 10.1080/03081087.2016.1273876Suche in Google Scholar

[19] B. McDonald, Finite Rings with Identity, Pure Appl. Math. 28, Marcel Dekker, New York, 1974. Suche in Google Scholar

[20] N. Nakagoshi, The structure of the multiplicative group of residue classes modulo 𝔭N+1, Nagoya Math. J. 73 (1979), 41–60. 10.1017/S0027763000018316Suche in Google Scholar

[21] E. Noether, Der Endlichkeitssatz der invarianten endlicher Gruppen, Math. Ann. 77 (1916), 89–92. 10.1007/978-3-642-39990-9_7Suche in Google Scholar

[22] L. Smith, Polynomial invariants of finite groups – A survey of recent results, Bull. Amer. Math. Soc. 34 (1997), no. 3, 211–250. 10.1090/S0273-0979-97-00724-6Suche in Google Scholar

[23] A. V. Sutherland, Structure computation and discrete logarithms in finite abelian p-groups, Math. Comp. 80 (2011), no. 273, 477–500. 10.1090/S0025-5718-10-02356-2Suche in Google Scholar

[24] P. Symonds, On the Castelnuovo–Mumford regularity of rings of polynomial invariants, Ann. of Math. (2) 174 (2011), no. 1, 499–517. 10.4007/annals.2011.174.1.14Suche in Google Scholar

[25] O. N. Vasilenko, Number-Theoretic Algorithms in Cryptography, Transl. Math. Monogr. 232, American Mathematical Society, Providence, 2007. Suche in Google Scholar

Received: 2016-9-8
Published Online: 2017-4-19
Published in Print: 2017-5-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gcc-2017-0003/html
Button zum nach oben scrollen