Startseite Knapsack problem for nilpotent groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Knapsack problem for nilpotent groups

  • Alexei Mishchenko und Alexander Treier EMAIL logo
Veröffentlicht/Copyright: 19. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work we investigate the group version of the well known knapsack problem in the class of nilpotent groups. The main result of this paper is that the knapsack problem is undecidable for any torsion-free group of nilpotency class 2 if the rank of the derived subgroup is at least 316. Also, we extend our result to certain classes of polycyclic groups, linear groups, and nilpotent groups of nilpotency class greater than or equal to 2.

MSC 2010: 20F18; 03D35; 20F10

Award Identifier / Grant number: 14-11-00085

Funding statement: The research was supported by the Russian Science Foundation, project no. 14-11-00085.

Acknowledgements

The authors are grateful to A. Miasnikov and A. Nikolaev for discussions and to the referee for attention to this work and advice.

References

[1] M. Davis, H. Putnam and J. Robinson, The decision problem for exponential diophantine equations, Ann. of Math. (2) 74 (1961), no. 3, 425–436. 10.2307/1970289Suche in Google Scholar

[2] W. A. De Graaf and W. Nickel, Constructing faithful representations of finitely-generated torsion-free nilpotent groups, J. Symbolic Comput. 33 (2002), 31–41. 10.1006/jsco.2001.0497Suche in Google Scholar

[3] M. Duchin, H. Liang and M. Shapiro, Equations in nilpotent groups, Proc. Amer. Math. Soc. 143 (2015), no. 11, 4723–4731. 10.1090/proc/12630Suche in Google Scholar

[4] E. Frenkel, A. Nikolaev and A. Ushakov, Knapsack problems in products of groups, J. Symbolic Comput. 74 (2016), 96–108. 10.1016/j.jsc.2015.05.006Suche in Google Scholar

[5] J. P. Jones, Universal Diophantine equations, J. Symb. Log. 47 (1982), no. 3, 549–571. 10.2307/2273588Suche in Google Scholar

[6] D. König, M. Lohrey and G. Zetzsche, Knapsack and subset sum problems in nilpotent, polycyclic, and co-context-free groups, preprint (2015), https://arxiv.org/abs/1507.05145. 10.1090/conm/677/13625Suche in Google Scholar

[7] M. Lohrey and G. Zetzsche, Knapsack in graph groups, HNN-extensions and amalgamated products, preprint (2015), https://arxiv.org/abs/1509.05957. Suche in Google Scholar

[8] J. V. Matijasevic, Enumerable sets are Diophantine (in Russian), Dokl. Akad. Nauk SSSR 191 (1970), 279–282; translation in Soviet Math. Doklady 11 (1970), 354–358. 10.1142/9789812564894_0013Suche in Google Scholar

[9] Y. Matiyasevich, Hilbert’s Tenth Problem, MIT Press, Cambridge, 1993. Suche in Google Scholar

[10] A. Myasnikov, A. Nikolaev and A. Ushakov, Knapsack problems in groups, Math. Comp. 84 (2015), no. 292, 987–1016. 10.1090/S0025-5718-2014-02880-9Suche in Google Scholar

[11] C. L. Siegel, Zur Theorie der quadratischen Formen, Nachr. Akad. Wiss. Göttingen Math.-Phys. KL II (1972), 21–46. 10.1007/978-3-642-61867-3_14Suche in Google Scholar

Received: 2016-11-11
Published Online: 2017-4-19
Published in Print: 2017-5-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gcc-2017-0006/html
Button zum nach oben scrollen